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1 Motivation

We are interested in modeling human motor skill acquisition
in complex dynamic tasks. Understanding how humans learn
to do a task can unveil new directions for learning of control
in robotics. Modeling motions of human learners can also
help us in generating effective motions for graphics and enter-
tainment robotics. Human motor adaptation has been widely
studied in structured tasks such as goal directed arm move-
ments, to answer questions such as ‘what is learned’ and ‘how
is it learned’ [1]. However, it is unclear whether the mod-
els proposed using studies of such structured tasks apply to
highly dynamic motor skills such as balancing and locomo-
tion. We study motor skill acquisition in a motion capture
friendly, highly dynamic task of balancing on a bongo-board.

2 Approach

Four subjects (Three Females, One Male) with no prior expe-
rience of balancing on a bongo-board, tried to learn the task
of balancing on a bongo-board in a motion capture laboratory
for three days alternatively with rest days (Fig. 1A). During
this time their actions were captured using 16 infrared cam-
eras of Vicon motion capture system (120 Hz.). An average
of 10 takes of 2 minutes each, were captured during an hour
long capture session each day. Subjects were allowed to use
the board only during the experiment time. All four subjects
showed tremendous improvement in balancing on the bongo-
board (evaluated using average balance time on the board
(Fig. 1C)).

2.1 PCA based Learning Discovery
We hypothesize that humans use basic primitive motions that
combine together and enable the performance of complex
tasks such as balancing on bongo-board. During the learn-
ing process, subjects explore different weighted combinations
of these primitive motions. Weights of the primitive motions
that are less useful for the task reduce as the subjects learn.
Decomposing the subject’s motion into such basic primitive
motions and evaluating contribution of individual primitives
(using weights) to the overall motion can thus provide a model
of what the subjects are trying to learn. However, the set of
primitive motions necessary for balancing on bongo-board are
not known. We assume that the motions of the subjects on the
final day (last day of experiments) hold the information about
the necessary primitive motions for the task of bongo-board
balance. We use Principal Component Analysis (PCA) [2] to
decompose subjects’ motion on the final day into basic prim-
itive motions. For a given set of data, PCA finds orthogonal

linearly independent basis vectors or bases (the eigen vectors)
such that the vector space spanned by them captures the max-
imum variance of the data. The PCA bases obtained from
the motion data thus correspond to most significant motions
which capture the variation in the given data. We use these
motions corresponding to the PCA bases as the primitive mo-
tions for our task.

Figure 2 (left) shows these primitive motions (Pi) obtained
from the final day data of all subjects using PCA. Centered
lower body joint angle data of all subjects from all takes of
final day was used for this purpose. We only use lower body
data (pelvis and below) as subjects seem to sparingly use up-
per body after the first few takes. We use the first 5 PCA
bases as primitive motions because they account for 95% of
the variance of the data. The net motion M can then be de-
scribed as a weighted combination of these primitives (Eq. 1).

M =
5

∑
i=1

wiPi (1)

where wi denotes the weight corresponding to the primitive Pi.
We assume that the primitive motions obtained from the final
day data also account for the variance of the data from day-1
and day-2 for all subjects. This is a simplifying assumption.
In reality, the subjects might be simultaneously learning the
primitives Pi and their weights wi. If so, it would be hard to
compare a subject’s motion across different days of learning
and hypothesize about the changes in control as (s)he learns.
Using our assumption, we fix the primitives Pi and calculate
their corresponding weights for day-1, day-2 and day-3 mo-
tions, for individual subjects. We average these weights over
all takes for a particular day for individual subjects. These
mean weights of each primitive motion are compared over the
period of learning for each subject (Fig. 2 right). The resul-
tant trends of how these weights change as subjects learn give
an insight into what the subjects are learning (See Sec. 3).

2.2 Linear Control using Identified Primitive Motions
We are also interested in creating control simulations which
mimic the motions of subjects learning to balance on a bongo-
board. Instead of tracking reference trajectories [3] obtained
from motion capture to create such motions in simulation, we
use a linear control approach called Output Feedback Con-
trol (OFC) inspired by recent success of such approaches in
balancing a simple model over variety of surfaces [4]. This
is because we are interested in obtaining a control which in-
herently generates different motions of the human learners
instead of a control that tracks a fixed target motion. This



approach also allows us to answer whether we can modify
well-established controllers to produce human-like motions.
OFC provides an easy way of integrating the primitive mo-
tions identified by PCA analysis in the form of outputs used
for feedback. We model the lower body in 2D using a four-bar
linkage with telescopic links (Fig. 1D). The wheel is modeled
as a cylinder. All contacts are modeled as rolling contacts
with no slip. The model has five degrees of freedom (DOF) in
total. The ankle, hip and knee joints (modeled as telescopic
joints) are actuated. We linearize this model to obtain a linear
system representation (Eq. 2).

ẋ = Ax+Bu, y =Cx (2)

where x is the state vector, u is the control input vector and y
is the output vector. OFC finds a linear control law u =−Fy
to stabilize this system. Similar to Nagarajan and Yamane [4],
the time-invariant output feedback gain matrix F is found us-
ing the convergent iterative algorithm in [5]. This algorithm
requires an output matrix C, a state gain matrix Q and a con-
trol input gain matrix R. While Nagarajan and Yamane [4] se-
lect outputs intuitively, we use primitives obtained using PCA
as outputs. The output feedback matrix C is thus composed
of PCA bases or eigen vectors. State gain matrix Q is con-
structed by diagonalizing the corresponding eigen values of
the PCA bases. Constructing the Q matrix in this way allows
us to emphasize primitives preferred by the human subjects
while obtaining F . Intuitively, this means that we measure our
outputs and take feedback in the space defined by the primi-
tive motions used by the human subjects.

3 Results

Subjects explore various primitive motions (P1-P5) such as
rocking in the lateral and sagittal planes and yaw about the
pelvis as they learn to balance on the bongo-board (Fig. 2
right). The decrease in weights w5 of pelvis yaw P5 suggests
that subjects learn to control their yaw in order to improve
balancing on the board (Fig. 2E). A weak trend of decrease
is also seen in the two coupled primitive motions of rocking
P3 and hip flexion-extension P4 in sagittal plane suggesting
improved control in sagittal plane (Fig. 2C,D). Two distinct
control strategies for balancing on a bongo-board (rocking
vs. non-rocking) emerge out of the trends of weight changes
w1 of lateral rocking primitive P1 (Fig. 2A). Subject-1 and
Subject-3 decrease rocking on day-2, followed by an increase
on day-3 (see w1). While rocking on day-1 may correspond
to falling behavior and instability on the board, the decrease
on day-2 suggests improved control. The increased w1 on
day-3 suggests use of controlled rocking as a strategy to bal-
ance on the board. Subject-2 and Subject-4 instead show an
increase in rocking on day-2 and further a decrease on day-
3. Thus they seem to explore rocking motion on day-2 and
then choose against using it on day-3. The correlation be-
tween weights w1 and w2 also suggest the use of knee and
ankle flexing to increase the range of motion of the board for
generating lateral rocking (Fig. 2A,B).
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Figure 1: Experiment setup and performance evaluation: (A) A
subject wearing standard set of 60-markers, balancing on
a bongo- board during motion capture. (B) Bongo-board
motion is also measured with 7 markers (black dots).
(C) Subjects improve their balancing ability which can
be measured by average balance time on the board over
the days of experiment. (D) A simplified 2D model of
human balancing on a bongo-board in simulation. The
model has 5 DOF (unactuated board has 2 DOF: rotation
of the wheel and sliding of the board (black arrows)). All
hip, knee and ankle joints are actuated (blue arrows).

As a first step towards a control simulation which produces
motions like those of human learners, we used OFC with out-
puts chosen as primitive motions and state gains chosen as
eigen values of those motions. We find that without any man-
ual tuning, these outputs and gains allowed us to get a stabiliz-
ing controller which could balance the non-linear 2D model
(Fig. 1D) in an ideal simulation (without any noise or mod-
eling errors). However, the resultant motions do not visually
look human like. Although we do not aim for robust con-
trollers, the range of attraction (ROA) for the resulting con-
trollers measured as the maximum board angle deviation that
can be recovered from, is also much smaller than what we see
in humans (max. ROA: 0.5◦ (control), 15◦ (humans)).

4 Future Work

We hypothesized that humans use weighted combination of
basic primitive motions for complex motor tasks and used
PCA to see how such primitives evolve as subjects learn a dy-
namic task of balancing on a bongo-board. The emergence
of distinct strategies for control (rocking vs. non-rocking)
from our analysis suggests the need of more data (more sub-
jects, motion capture our longer learning interval beyond 3
days). Our preliminary simulation using linear Output Feed-
back Control modified to use human data, could stabilize a
simplified 2D model of human balancing on a bongo-board.
However, the resultant motion did not compare to human mo-
tion. A more detailed simulation (with 3D model, accounting
for human like noise and delay) might be necessary to simu-
late motions of human learners.



P3 - Sagittal Rocking

P1 - Lateral Rocking

P2 - Knee Flexing

P5 - Pelvis Yaw

P4 - Hip Flexing-Extending
             (Sagittal)

A.

B.

C.

D.

E.

1 2 3
Day

2

2.3

2.6

0.8

1.4

2

0.4

0.9

1.4

3

4

5

M
ea

n 
 |w

1|
  

0.8

1.5

2.2

Subject 1
Subject 2
Subject 3
Subject 4

M
ea

n 
 |w

2|
  

M
ea

n 
 |w

3|
  

M
ea

n 
 |w

4|
  

M
ea

n 
 |w

5|
  

Figure 2: Primitive motions and their corresponding weights. (A,
B) Primitive P1 is rocking in lateral plane using hip, knee
and ankle joints while P2 is bending using knee and ankle
joints. (C, D) P3 and P4 primitives correspond to sagit-
tal plane motions: rocking in sagittal plane using hip,
knee and ankle joints and flexion-extension motion of hip
joints respectively. (E) P5 is yaw about the pelvis. The
right column shows how the weights for each of the five
primitives vary over the three days among the different
subjects.
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