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1 Introduction

A primary goal of robotic rehabilitation is to provide repeat-
able, cost-effective therapy that is comparable to or better than
conventional therapy. Lower-limb rehabilitation robots can be
separated into robot-dominant devices, where the robot drives
the motion of the human, and cooperative devices, where
the robot and the human share control. Robot-dominant ap-
proaches have been shown to be less effective, as the human
is less actively engaged [1]. Cooperative rehabilitation robots
are typically force-controlled, employing techniques such as
assist-as-needed, error augmentation, or proportional elec-
tromyography. While upper-limb rehabilitation robots have
outperformed conventional therapy [2], conventional lower-
limb therapy is still the most effective option.

Some rehabilitation robot techniques implicitly assume a re-
lationship between robot actions and human neuromuscular
response. If these models are wrong for a particular subject,
the therapy will be less effective. A control strategy which in-
corporates model identification could overcome this problem.

We propose a new strategy for robotic gait rehabilitation, in
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Figure 1: Exoskeleton data from four representative walking
strides. The top plot shows the desired motor position
(radians). θ0,θ3 were fixed and correspond to normal
ankle angles at heel strike and toe-off. θ1,θ2, repre-
sented by white and black dots, respectively, were ran-
domly generated for each step. The bottom plot shows
the corresponding torque generated by the exoskeleton
(N·m). The dashed line indicates toe-off, and the dotted
line indicates mid-stance of the contralateral foot.

which the dynamics of the human-robot system are identified
and used to design a controller that guides the patient to a de-
sirable gait pattern. In this study, we will use linear models
to approximate system dynamics, which have low computa-
tional cost and have been effective in previous studies of robot
and human dynamics [3]. We will consider different state
definitions and control inputs, to find parameterizations with
high predictive validity and applicability to rehabilitation.

2 Methods

2.1 Walking experiment
One subject (male, 22 years old) walked on a split-belt tread-
mill for four minutes at 1.25 m/s, resulting in 221 steps. The
subject wore a unilateral tethered one degree-of-freedom an-
kle foot orthosis [4]. The torque at the ankle was governed by
series spring displacement and an off-board motor.

During stance, the motor tracked the position of four pre-
determined angles (Fig. 1). The initial (θ0) and final (θ3)
angles are at instances of zero exoskeleton torque and cor-
respond to the ankle angles seen in normal walking. The
two intermediate angles (θ1,θ2) occurred at the same point in
the gait cycle for each step. The magnitudes, between 0 and
1.75 radians, were randomly generated at heel strike. The de-
sired motor position trajectory resulted in exoskeleton torque
(Fig. 1).

2.2 System definitions
We attempt to find a linear model

yi =Cxi +Dui (1)

where xi represents the states at right toe-off, ui the inputs
at right toe-off, and yi states at two corresponding Poincaré
sections, in particular, toe-off on the exoskeleton side and the
following contralateral mid-stance.

Given the state xi ∈ Rn and input ui ∈ Rm at the toe-off of the
i-th step, define

zi :=
[

xi
ui

]
(2)

For a given step i and zi, the states and inputs at toe-off, we
wish to predict outputs yi at the following contralateral mid-
stance. In particular, we seek a linear relationship between
the deviation from the mean states/inputs at toe-off and the
deviation from the mean states at the following mid-stance,

∆yi = J∆zi (3)



where ∆yi = yi−y and ∆zi = zi− z, with y,z the mean outputs
and states/inputs, respectively, across all steps. J is the Jaco-
bian, which we estimate by least squares method: for ∆Z and
∆Y where the i-th column represents all of the deviations of
the states/inputs and states for the i-th step,

JT =
(
(∆Z)T )†

(∆Y )T (4)

where † refers to the Moore-Penrose Pseudoinverse.

We can then extract the C and D matrices for the linear model.
J is a block matrix such that

J =
[

C D
]

(5)

Exploratory analysis is still in progress to determine the pre-
dictive power of the inputs and states as defined in our pi-
lot data collection. Variables include kinematics, kinetics and
electromyography (EMG) data of major muscle groups for
both legs, and torque parameters from the device. Poincaré
sections were taken at toe-off on the exoskeleton side and the
following mid-stance. The sections were chosen to capture
the case where exoskeleton activity on the unaffected limb is
used to alter paretic limb activity on the subsequent step. For
future work, we plan to test this approach among individuals
with chronic hemiparesis following stroke.

After J was calculated, we multiplied each column by the
mean absolute state/input deviation to see the mean effect of
each state and input. We then normalized each row to deter-
mine the relative contribution of each state and input to the
output state.

3 Results

We were able to determine a linear model mapping the set of
center-of-mass velocity (lateral and forward); knee and ankle
flexion angles and joint velocities for both legs; and exoskele-
ton inputs, defined as θ1,θ2, and the integral of exoskeleton
torque over the step, to the set of muscle activity (defined as
integral of EMG signals) for the biceps femoris, vastus me-
dialis, soleus, medial and lateral gastrocnemius, and tibialis
anterior in the unassisted leg; hip, knee, and ankle flexion an-
gles for both legs; and knee and ankle joint velocities for both
legs. The output states were up to 69% explained by the linear
model (mean R2 = 0.4, all p < 0.05).

4 Discussion

Exploratory analyses will continue to determine a set of in-
puts and outputs that are relevant to rehabilitation and can
explain relevant human dynamics. For this set of inputs and
outputs, a linear model was found which explains almost half
of the deviation of the output states. The ultimate goal of this
project is to guide the human to a desired state, which will be
achieved through the model definition described above and
adaptive control techniques. With the present control inputs
and states, the controllability matrix has poor conditioning,
which may be resolved by alternate parameterizations.
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Figure 2: A representative plot of experimental ∆yi data vs. pre-
dicted J∆zi data for medial gastrocnemius activity. The
observed data were taken at mid-stance of the unassisted
leg, and the predicted data were the prediction of mid-
stance states from exoskeleton-side toe-off. (Slope of the
best fit line = 0.48, R2 = 0.5, p = 1×10−32).

One result was that of the four inputs, the integral of torque
and θ1 were the largest absolute factors in predicting the out-
puts, but with opposite effects. For example, applying more
torque on one leg during early stance led to increased lateral
gastrocnemius activity in the other leg during early stance.
We will continue to explore the relationships between the
human-exoskeleton states in the coming months.
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