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1 Introduction 

Our research goal is to understand how our nervous system 

uses sensory feedback to achieve stable and adaptive loco-

motion. Our approach toward this goal is to use nonpara-

metric system identification to characterize how human lo-

comotion responds to external perturbations and mechanis-

tic modeling to interpret these responses. A realistic model 

of human locomotion should include sensory feedback in 

order to respond to sensory perturbations and, more im-

portantly, to produce stable walking. Among detailed mod-

els of biped locomotion, only a minority includes sensory 

feedback (e.g. Geyer & Herr, 2010; Taga, 1995). 

 

In this study, as a first step toward our modeling goal, we 

started with a simple model of human locomotion with pro-

prioceptive feedback (Geyer, Seyfarth, & Blickhan, 2003), 

added visual feedback, and characterized the model’s re-

sponses to visual and mechanical perturbations. 

2 Background 

This study was inspired by a research characterizing how 

human walking responds to broadband motion of the visual 

scene (Kiemel et al., in prep.; Logan et. al., in prep.). In 

these studies, the muscular and kinematic responses to 

movement of the visual scene were first characterized in 

the frequency domain by harmonic transfer functions 

(HTFs; see Methods). Then, the HTFs were converted into 

the time domain, resulting in a phase-dependent impulse 

response function (IRF) (Fig. 1).   

 

 

Figure 1: Experimental responses to visual-scene move-

ment (Kiemel et. al., in prep.). 

An IRF describes how a perturbation at any phase of the 

gait cycle, indicated on the horizontal axis, produces re-

sponses at times indicated on the vertical axis. The diago-

nal line corresponds to a response measured at the same 

time as the perturbation, so non-zero responses only occur 

above the diagonal line. For example, Fig. 1a shows that 

when the visual scene moves forward during late swing or 

early stance, activity of the lateral gastrocnemius muscle, a 

plantarflexor, increases during late stance.  The responses 

of this and other muscles causes the person’s anterior-pos-

terior (AP) velocity to increase (Fig. 1b) and the person to 

move forward on the treadmill (Fig. 1c).    

3 Methods 

In this study, we modified a simple locomotion model with 

proprioceptive feedback (Geyer al. 2003) by adding visual 

feedback. Then, we perturbed the model with broadband 

visual-scene motion and analyzed its responses in the same 

way as human data. 

The model 

The model has a two-segment leg with one Hill-type exten-

sor muscle. The neural stimulation of the muscle, 𝑆(𝑡), 

consists of two feedback components, proprioceptive pos-

itive force feedback and visual negative velocity feedback: 

 

𝑆(𝑡) = 𝑆0 + 𝐺𝑃𝐹𝑀𝑇𝐶(𝑡 − ∆𝑃)  

−𝐺𝑉(𝛼)(𝑉𝐶𝑂𝑀(𝑡 − ∆𝑉) − 𝑉𝑉(𝑡 − ∆𝑉)),
 

 

where 𝑆0 is the constant stimulation bias, 𝐺𝑃 is the constant 

proprioceptive gain factor, 𝐹𝑀𝑇𝐶(𝑡) is the force of the mus-

cle-tendon complex, and ∆𝑃 is the proprioceptive time de-

lay. In contrast to 𝐺𝑃, the visual gain 𝐺𝑉 is not constant, but 

is instead a Gaussian function of 𝛼, the angle of the leg axis 

from the “foot” to the “hip”. We wanted leg-extensor ac-

tivity to be modulated in late stance, as suggested by ex-

perimental data, so the maximum of 𝐺𝑉 was set to occur at 

an 𝛼 during late stance. Visual feedback depends on the 

difference between 𝑉𝐶𝑂𝑀(𝑡), the AP center-of-mass veloc-

ity, and 𝑉𝑉(𝑡), the AP visual-scene velocity, and occurs af-

ter a visual time delay ∆𝑉. 

 

To perturb the model, we let visual-scene velocity (𝑉𝑉) be 

small-amplitude low-pass-filtered white noise with a cut-

off frequency of about 3 × 𝐺𝑎𝑖𝑡 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦. The model is 

able to produce a stable gait. 

The HTFs and IRFs 

To characterize responses in the frequency domain, we first 

estimated the phase of the gait cycle based on heel-strike 

times. The response variables were then expressed as func-

tions of estimated phase, so that the system’s dynamics 

near the limit cycle could be approximated as being linear 

time periodic (LTP). For an LTP system, input at frequency 

a. 
visual-scene Velocity 

to Muscle Activity 

 

 

b. 
visual-since Velocity to AP 

Velocity 

c. 
Visual-scene Velocity to 

AP Position 

mailto:shrafiee@umd.edu


f produces output at frequencies f + kf0 for all integers k, 

where f0 is the gait frequency. So the input-output mapping 

for an LTP can be described by a harmonic transfer func-

tion (HTF) H(f) in the frequency domain: 

 

𝑌(𝑓) = ∑ 𝐻𝑘(𝑓 − 𝑘𝑓0)𝑈(𝑓 − 𝑘𝑓0)

∞

𝑘=−∞

 (2) 

 

where U(f) and Y(f) are the Fourier transforms of the input 

and output signals, respectively. 

 

To convert the HTF to a phase-dependent IRF in the time 

domain, a two-dimensional (in frequency f and index k) in-

verse Fourier transform was applied to the HTF. A correc-

tion is made for the mapping from time to estimated phase, 

so that, to first order, the IRF does not depend on the par-

ticular method used to estimate phase.  

4 Results 

We computed the model’s responses to visual and mechan-

ical perturbations for various model parameters. Figure 2 

shows an example of responses to visual-scene motion. 

These responses were highly phase dependent, reflecting 

our specification of the visual feedback. We observed that 

forward visual perturbations during the swing phase in-

creases the extensor muscle activation level in the late 

stance (Fig. 2a), which eventually results in kinematic re-

sponses of the person, increasing the AP velocity (Fig. 2b) 

and AP position (Fig. 2c). In other words, when the visual 

scene moves forward during swing, the extensor muscle 

activation increases during push-off, causing the person to 

increase walking speed in the next step and move forward. 

 

 

 

5 Discussion 

The model’s modulation of push-off muscle activity during 

late stance was similar to human data, except that humans 

respond to a wider range of perturbation phases. To capture 

this aspect of human data in which a perturbation over a 

wide range of phases produces a response over a much 

more restricted range of phases, it may be necessary to add 

additional state variables to the model, such as those de-

scribing a central pattern generator. We will explore this 

and other modifications in future work exploring models 

with additional mechanical degrees of freedom and mus-

cles. 
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Figure 2: Model responses to visual-scene movement. 
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