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1 Introduction & Motivation

Simple mechanical models of legged locomotion are useful in
legged robot control [4], prosthesis design [1], human balance
assessment [2], and examining goals in natural gait [6]. An-
other approach to studying gait involves much more detailed
modelling of the system [5]. There is a tradeoff in the ac-
curacy and scope of the model versus the ability to interpret
and generalize results. Complex models may require more
parameters to tune, and high dimensionality may pose a prob-
lem for realt-time trajectory optimization methods. Choosing
a model to study a specific question about a walking system
performing a given task therefore requires engineering judge-
ment about what aspects of the system and task are relevant.

We are curious about which aspects of walking dynamics are
most essential. Many walking models include a falling mode.
The limitation on ground reaction forces inherent in a legged
system severely restrict what motions are possible. One use-
ful abstraction of this limitation is to consider a model of
walking with a point foot, for example a linearized inverted
pendulum model (LIPM). The two dimensional LIPM ex-
hibits the falling mode that likely dominates stability in a wide
range of legged locomotion. However, the amount that this
falling mode dominates a particular walking system, natural
or artificial, undergoing a particular motion, is not well quan-
tified. In addition, we believe that the dynamics of the swing
leg, and not just the falling of the center of mass, may repre-
sent an important aspect of gait, particularly at higher walking
speeds.

In addition, we wish to quantify both how “useful” and how
“wrong” a model is. Here we consider a model’s usefulness
to be related to its ability to predict the future evolution of
the legged system, in the absence of any other models or in-
formation. A model’s wrongness is related to how damaging
the assumption of that model is to the prediction of the legged
system. That is, even if other models or information are avail-
able to assist in predicting the system’s evolution, forcing the
prediction to be compatible with a very wrong model would
necessarily introduce innacuracies.

2 Our Approach

We seek to quantitatively compare the predictive powers of
simple models of walking for a given task. As a simplifica-
tion, we will consider the ability of a simple model to pre-
dict the state derivative of the complex model at a given state.
This prediction is therefore valid only locally in time and state
space. The system to be studied will be a passive kneed walk-

ing model. We will compare how much of the dynamics of
the kneed walker can be captured by an inverted pendulum
model (LIPM) (with no swing leg mass) versus a compass
walker (with swing leg mass). At states throughout a gait-like
motion of the kneed walker, we will compare the ability of
each of the two simpler models to predict the future (local)
behavior of the kneed walker, ẋc.

Two methods are used to predict the kneed walker segment
angle velocities using each model. Briefly, both methods in-
volve projecting the kneed walker state, xc, into the state space
of the simple system xs, then calculating the derivative, using
using a transformation Ts and equations of motion:

xs = Ts(xc) (1a) ẋs = fs(xs) (1b),

For the LIPM, Ts matches the total center of mass between the
models. For the compass walker, Ts matches the hip location
and angle of the mass of the swing leg (Figure 1). The local
prediction for the simple model (ẋs) does not uniquely predict
the behavior of the complex model (ẋc) since for any given
xs,n, a family of xc satisfy the relationship (1a). Here we use
two different methods to predict the complex behavior given

Figure 1: The state if the kneed walking model under study (left),
is transformed to two simpler models, the linear inverted pendulum
model (top), and the compass walker (bottom). The state deriva-
tive for each simple model is calculated using the respective model’s
equations of motion. This state derivative is then transformed back
into the space of the keed walker using two different methods, both
constrained to be consistent with the simple model.



ẋs. The first, the naive prediction, calculates the ẋc with min-
imal norm, while satisfying (1a). The second, the omniscient
prediction, assumes that the acceleration of the complex sys-
tem is known, and finds the ẋc that is closest to ẋc,actual while
still satisfying (1a).

A naive prediction close to the actual state derivative indicates
that the simple model can represent the kneed walker well
with no other information (and therefore may be quite use-
ful). An omniscient prediction very different from the actual
state derivative indicates that the simple model introduces sig-
nificant inconsistency with the dynamics of the kneed walker
(and is therefore probably quite wrong).

3 Preliminary Results

The kneed walking model was initialized in a state with the
knee bent and swinging forward (Figure 1), then integrated
forward in time passively for 0.3 nondimensional time units.
The ẋc was predicted at each time step using both the naive
and omniscient methods, for each model (Figure 2). The com-
pass model provides a reasonable prediction of the stance leg
angular velocity using both the naive and omniscient meth-
ods. However, the prediction of the swing thigh and shank
velocities is substantially better using the omniscient method
than the naive. The linear inverted pendulum model predicts
the stance leg and swing thigh velocities poorly using both
methods, and the swing shank velocity is only predicted well
using the omniscient method.
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Figure 2: Comparison of the ability of two simple models to pre-
dict velocities for a planar kneed walker through a range of states.
Each plot shows the velocity of a joint of the kneed walker based
on the naive prediction of the model (that is, velocities that are con-
sistent with the transformation T between the kneed walker and the
simple model, and minimal in a least squares sense). Also shown are
the omniscient predictions, which are consistent with T and are min-
imally different from the actual velocities, in a least squares sense.

4 Discussion

The LIPM generally provided a poor prediction of the sys-
tem’s evolution for the stance leg and swing thigh. However,
using the omniscient method, a better fit was found for the
swing shank velocity. This suggests that, in the states consid-
ered, the swing shank had little effect on the projected LIPM
state, so the optimization process was able to achieve better
prediction. Therefore, while the LIPM was not useful in pre-
dicting the swing shank velocity, it was also not so wrong
as to limit the ability to predict it given sufficient additional
information. The compass walker was found to be useful to
predict the stance leg velocity (the naive prediction is good),
and also is not very wrong for all the states (the omniscient
prediction is good for all three states). This is likely due to the
fact that for any given motion of the compass model’s swing
leg, a combination of thigh and shank motions can be found
which largely replicate the kinematics of the compass model.

One limitation of the current work is the focus on the pre-
dicted velocities, as opposed to accelerations. We plan to an-
alyze accelerations, as well as more complete walking gaits,
including hybrid dynamics. We will extend this analysis to
consider the effect of impacts.

Other methods could quantify the performance of simple
models. For example, linearizing the complex system’s dy-
namics and performing a singular value decomposition can
lead to a lower dimensional system [3]. This obviates the
need to design a simple system, as well as the transformation
function from the complex to state to the simple state. How-
ever, one advantage in designing a simple system is that in-
tuition can be used to guide the process. Also, exploration of
different simple models may help build intuition and answer
questions regarding the mechanisms involved in walking or
other tasks. We predict for example that adding a swing leg
to a model may make more sense when the system is walking
faster, as the inertia of the swing leg may start to play a larger
role. More generally, we propose this work to contribute to a
discussion of why we choose a given model for a given task.
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