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1 Introduction

Modeling of legged locomotion as a nonlinear rhythmic dy-
namical system that operates near a (stable) limit cycle is a
common practice in robotics and biology. Under this mod-
eling framework a wide variety of methods have been de-
veloped for the identification of the limit cycle as well as
the dynamics near, but off of the limit cycle. For exam-
ple, it has been showed that simple low dimensional spring–
mass models can accurately capture the steady-state charac-
ters of locomotor systems. However, unlike their success
in characterization of the limit cycle, they fail at predicting
the stability properties of such systems, e.g. how the dynam-
ics recover from perturbations [1]. An alternative to such
“first-principles” (or “grey-box”) models—which have inher-
ent structural limitations—is a set of “block-box” data-driven
system identification approaches that may better capture the
dynamics around the limit cycle [1, 3].

However, existing black-box methods for periodic systems
have three basic limitations. First, most existing methods pre-
sume the ability to measure all state variables. Second, they
significantly down samples the raw data to construct multi-
ple cross sections within a cycle. Finally, these methods are
typically “input free” and the identification is performed only
based on the output measurements. In the context of system
identification of non-rhythmic systems we know that “input–
output” approaches can be powerful since they typically have
higher signal to noise ratio and, critically, they address the
problem of hidden states and/or delays in dynamics.

In this study our goal is to develop a method for the identi-
fication of stability properties of locomotor dynamics using
an input–output approach which does not require downsam-
ple the raw data and does not presume full state measure-
ment. We have previously shown that an input–output linear
time-periodic (LTP) system structure can be used to repre-
sent rhythmic locomotor behaviors around their limit cycles.
This approach considers legged locomotion models as hybrid
dynamical systems with state-dependent transitions between
system phases being approximated as time-dependent tran-
sitions [2]. Here we show that our the data-driven system
identification technique can be utilized to characterize stabil-
ity properties of limit cycles for clock-driven legged locomo-
tion models. To this end, we use the concept of harmonic

transfer functions (HTF), first to obtain a non-parametric sys-
tem model based on input–output data and then to identify
an associated, explicitly parameterized model to estimate the
eigenvalues of a suitably defined Poincaré map. We present
simulation studies for a simple hybrid spring–mass–damper
across a range of system parameters to illustrate the accuracy
of this data-driven method.

2 Modeling Legged Locomotion as an LTP System

Locomotion systems are generally nonlinear, hybrid dynami-
cal systems with stable periodic orbits. We begin by lineariz-
ing these systems around their limit cycles to obtain an LTP
representation. In doing so, our first assumption is that phase
transitions that are normally state-dependent can be approx-
imated as being only time-dependent around the limit cycle.
We then introduce another approximation to reduce system
dynamics to a finite dimensional piecewise LTI representa-
tion, admitting a practical parametric identification frame-
work while preserving its LTP nature. The final LTP equa-
tions of motion hence take the form

ẋ(t) =

{
A0x(t)+B0u(t), if mod(t,T ) ∈ [0, t̂)
A1x(t)+B1u(t), if mod(t,T ) ∈ [t̂,T )

with a similar structure for output dynamics. This formula-
tion constitutes our framework for analyzing and identifying
clock-driven legged locomotion models in this study.

3 The Hybrid Spring–Mass–Damper Model

Figure 1(A) illustrates a simple, vertically constrained spring–
mass–damper system, consisting of a point mass attached to
a spring–damper mechanism connected in parallel with a lin-
ear actuator. The hybrid nature of the model is introduced
through the leg damping, which is turned off and on during
the compression and decompression phases, respectively. The
force transducer is used both as an active energy input f0(t) to
maintain a stable limit cycle and as an exogenous input u(t) to
support data-driven system identification. We use this model
as an illustrative example for our identification method.
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Figure 1: (A) Hybrid, vertical spring–mass–damper system. (B)
Eigenvalues of the linearized return map for the dynam-
ics around the limit cycle, computed using three different
methods as a function of the spring stiffness.

The equations of motion for this model are given by

mẍ =

{
−mg− cẋ− k(x− x0)+ f (t), if ẋ > 0
−mg− k(x− x0)+ f (t), otherwise,

(1)

Simulations in this study use g = 9.81m/s2, k = [150 −
240]N/m, c = 2Ns/m, m = 1kg and x0 = 0.2m with the force
transducer input constructed as f (t) = f0(t)+u(t). Following
the modeling principles described in Section 2, we obtain the
LTP system matrices as

A0 =

[
0 1
−k −c

]
, A1 =

[
0 1
−k 0

]
.

B0 = B1 =

[
0
1

]
, C0 =C1 =

[
1 0

]
,

(2)

Using the framework described in [4] on these LTP dynamics
yields analytic solutions to the harmonic transfer functions.

4 Method for Estimating the Linearized Return Map

Let Σ0 and Σ1 be two Poincaré sections associated with the
two distinct hybrid transitions for our model. This results in a
nonlinear map P0→1 : Σ0→ Σ1 defined by continuous forward
trajectories of the system from Σ0 until their intersection with
Σ1. Likewise, P1→0 : Σ1→ Σ0, resulting in an overall, single-
stride return map on Σ0 constructed as P0→0 := P1→0 ◦P0→1.

Approximating the hybrid equations of motion around a limit
cycle as a Piecewise LTI system, linearized versions of P0→1
and P1→0 correspond to transition states between the two lin-
ear systems ẋ(t) = A0x(t), x(t0) = x0, at time t = t0 + t̂ and
ẋ(t) =A1x(t), x(t1) = x1, at time t = t1+(T− t̂), respectively.
The overall linearized return map on Σ0 is then computed as

DP0→0 = eA1(T−t̂)eA0 t̂ . (3)

In this study, we both analytically derive and parametrically
estimate A0 and A1 matrices for the hybrid model of Section 3.
However, one should note that even the analytic version of (3)
is an approximation to the “true” linearized return map, since
we approximate hybrid transitions as being dependent on time
rather than state in close proximity to the limit cycle. For this

reason, we use a numerically computed Jacobian to the return
map for the hybrid model as a ground truth against which we
compare the eigenvalues estimated with both the parametric
LTP model as well as our analytic approximations.

5 Results

For the analytic approximation, we explicitly derive the sys-
tem matrices in (2) using the simulated system parameters.
For the data-driven identification step, we first estimate the
non-parametric HTFs using the input–output method detailed
in [2]. Subsequently, we perform a parametric fitting to esti-
mate the values for k and c that minimize the error between
non-parametric HTFs and analytically derived HTFs of the
explicitly parameterized LTP system structure in (2) (See [2]
for details). Having a piecewise LTI representation with ex-
plicit estimates of system parameters, we obtain the eigen-
values of the LTP system as described in Section 4 for both
analytic and the identified model.

We repeated the above steps for different values of spring
constants as illustrated in Fig. 1(B). Note that our model is
a two-dimensional system due to its clock-driven structure
and we observe two complex conjugate eigenvalues except
around k = 160, where we obtain two distinct real eigenval-
ues. Our results show that the LTP framework yields accu-
rate estimates for the true eigenvalues of the system. We be-
lieve that the small error (see Fig. 1(B)) originates primarily
from our approximating of state-dependent hybrid transitions
as time dependent away from steady state.

In future work, we plan to extend this study to more realis-
tic legged locomotion models that are not clock-driven and
incorporate separate flight and stance phases with different,
physically relevant mechanisms for regulating system energy.
We also hope to extend the parametric identification work to
more general models without having a priori knowledge of
system order.
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