Pacer: Modular, real-time software

for legged robot planning and control

Samuel Zapolsky, Evan Drumwright
The George Washington University, Washington, DC, USA
{samzapo, drum}@gwu.edu

1 Introduction

Integrating robotic systems for planning, estimation, and con-
trol is a widely interdisciplinary task, drawing on the expertise
of hardware engineers, software developers, and control the-
orists (among others). Researchers often have to collaborate
across multiple institutions to create fully functional robots.
The ease with which roboticists can communicate by passing
techniques and software between research groups is a signif-
icant factor in how quickly robot systems can be prototyped,
built, and controlled. Cooperation and standardization help
properly assess work and permit effective adoption and devel-
opment upon existing research in the field. We present a soft-
ware package, Pacer, that provides an up-to-date, stable code
base for locomotion. Pacer allows researchers to contribute
directly to the state of the art in locomotion, while enabling
them to appraise, modify, and adopt existing software.

Similar compilations of robotics planning and control tools
have been made publicly available, including the work of the
Gepetto team at LAAS CNRS and Drake from the Robot Lo-
comotion Group at MIT[3]. Pacer is a framework package
developed for real-time perception, planning, and control of
simulated and physical robots. Pacer provides:

An up to date, stable code base for state of the art planning
(motion, path, footstep) and control (error feedback, opera-
tional space and joint space, inverse dynamics) software for
robot locomotion.

A high level control interface that abstracts planning and
control for legged robot locomotion to high level commands
(e.g., Dubins car, planar robot).

A plugin robot interface for seamless transition of control
from in situ to simulated robots (also used by Schaal [2]).

A plugin-based control architecture that permits hot-
swapping controllers while a robot is active.

The software we have developed is publicly available at
https://github.com/PositronicsLab/Pacer.

1.1 High level control interface for legged robots

Pacer provides a simple front end to semi-autonomous con-
trol in locomotion by abstracting legged robot footstep plan-
ning and control to more simplistic commands (e.g., planar
robot degrees of freedom (x,y, 0), the base position differen-
tial of the robot in SE(2)). Using this abstraction, an operator
can drive a robot like a car, or have the robot base follow
a planned trajectory between waypoints in the environment.

This abstraction can be used as an accessible method for con-
trolling legged robots by researchers not involved directly in
locomotion research; as examples, consider problems like im-
age stabilization from walking robots, image recognition on
situated legged robots, path and footstep planning algorithms
for walking robots, and design of new legged machines. We
hope for Pacer to catalyze projects such as these.

1.2 Plugin robot interface

Our software maintains and updates an internal model of
the robot being controlled. Pacer parses the inertial and dy-
namic properties from standard robot description file types
(SDF, URDF) and uses this model to generate kinematic (Ja-
cobian), and dynamic (generalized inertia tensor, momentum)
data independently of any particular simulator’s kinematics
and dynamics representations. This independence from a par-
ticular simulator allows for ready communication between
groups that conduct research within different simulators. We
have demonstrated our system controlling real and simulated
robots with no alteration to the underlying controllers (see
Figure 1).

Figure 1: The quadruped robot R. Links (left), in Moby (center),
and Gazebo (right).

1.3 Modular planning and control structure

The control architecture we use adopts a plugin framework
(also used to manage robot controllers in Gazebo [1]). We
modularize each controller and planner into its own encapsu-
lated unit. Though some systems may bridge planning and
control into a single system (kinodynamic planning), the ac-
tive systems on a robot often are segmented into distinct, se-
quential categories: perception, planning, and control. How-
ever, one may use further categorizations, including global
and local planning, reactive control, stabilization, balance, in-
verse kinematics, inverse dynamics control, and error feed-
back control. Pacer ensures that sequential processes (e.g.,
footstep planning then inverse kinematics) are run in order,
while allowing non-interdependent processes—such as global
path planning—to run in parallel. We further extend plu-

gin scheduling by adding a real-time factor to each control
module, permitting a controller to run for n iterations of the
real time system before it is queried for a control input to the
robot. This layered architecture is illustrated in Figure 2.

References

[1] N. Koenig and A. Howard. Design and use paradigms
for gazebo, an open-source multi-robot simulator. In Proc.
of IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS), pages 2149-2154, Sendai, Japan, Sept 2004.

[2] S. Schaal. The SL simulation and real-time control
software package. Technical report, Univ. Southern Califor-
nia, 2009.

[3] R. Tedrake. Drake: A planning, control, and analysis
toolbox for nonlinear dynamical systems, 2014.

Non-real-time components

Ty
OuT:
Flanning Perception
modules
User input
.~ Y
Joystick Planning results
Gamepad
Keyboard IN:
A
Ty Sensory data
Y -
Perception State information
madules))
Planning gueries
.~ Y
N =
Real-time components
" ™
Joint trajectony|
Reactive Oy Oy
planning/ Step planner
Stabilization
9a
[
., h:lreal-time robot trajectory
1 Vi Wy
¥ I
| - "~
Inverse u L
dynamics "
. -
- Shared Memory
Error-feedback ;
controllers || %o 7
IJ“. —_—
=3 . T A
it 1:1 real-time sensory data
. .y

Figure 2: Diagram of layered control architecture in Pacer

