
 

Course outline i

l Particles objects whose orientation is not useful
and can be represented by a single point

2 Rigid bodies objects whose position and orientation
are important Represented by positions and angles

Rigid shapeof object does not change

Apace rigidbody

3 Deformable bodies objects whose shape can change

Not studied in this course See course on

Mechanics of Materials

MOTION IN A STRAIGHT LINE

particle moving in a straight line

0

I
s

displacement s from origin o

Differentiation

position s velocity v acceleration a

S vids a dy
dt dt

Integration to go backwards
acceleration velocity position



Integration Acceleration to velocity

case1 i Say acceleration is known as a functionof time t

DI act
dt t

dv actldt f du fattldt
to

where Vo to are initial velocity and time

v is velocity at time t

fdu Eli v v t.f.at dt

t7 UH v t faut de
to

Example Mls

say ACH 3t4t given initial velocity Vo 3ms

at initial time to o.se Determine it
t t

HI V t fact dt 3 t J 3t4t dt

to 0

3 t ft t 4
3 t 3 t 2E

V t 3 t z t t 2t2 Mls ANS



Integration velocity to position

caset Say V is known as a function of time
t

VA day VEIDT ds
dt

Ids t.frHdt

Ids s SHI So valet

t
SH Sot Jv It

to

Integration what if acceleration is known as a

function of velocity
V

Cat rather than as a functionof time

why might acceleration be a funtion of V

E wind resistance object moving through a fluid

electromagnetism charges moving through a

magnetic field experience forces that depend

on velocity

So a aCv dv
It

functionofvelocity



V
du tf.am at v v

true but useless because

the integral depends on v which may
change with time but we don't know hog it

changes with time

we need to isolate the variables separation ofvariables
au dy

dt
t

is

Example Object falling through a liquid
to O s v 0 m s initially at rest

Given aw g
CV lo 3 v say

V in Mls
w

w a in Mls
gravity Llinear drag

Determine VG

au dft t.f.at Ifdata
Vo

t t IEw fight



Plug in to o and Vo o

t o les lo 3D kendo

3 C 3

3 t

inflow
Exponentiate both sides

e
3T 1032 because ethkwhat

a
whatever

toe 3T co zu 3v to toe

3T
V lo lo e

T ve amLIt r
ult 10

3102 velocity as a F
functionof

ANS
time

Integration what if the acceleration is known only
casek

as a
function of position

Examples gravity electrostatics spring
magnetism

Others feedback control in robots

and many
modern machines may have



position dependent or velocity dependent forces

from motors and other actuators

g cruise control relies on applying forces
that depend on the car's speed

landing a rocket and keepingitical
may require forces that depend

on position

velocity tilt angle etc

So we have acs DI has 3variables i v s t

J dt
i

need to convert to 2 so we can
isolate them

or as a function

of s
t using chain rule

acs dfg defy ddg v

AG day V acslds Vdv

acids vdv f VII
S

Jacslds V2
2

So

Rearranging after integration gives
us v as a function of S

Integration velocity as a function of positions

dfe
vest

1
dt t to

gIs t a

separating variables



 

Motion in 2B and 3D Cartesian coordinates

Represention

n 2 Top F position vector

I f Typ x y z Ii t y f t 2Te
Feo y
I vqdopcityf.dz

oP dIu ofeCt v

X

ni I I unit vectors die it date f t did I

Recall chain rule dq Pq dipq pdq
of differentiation

Note did d d so because constant

vectors

acceleration of P DI a DIE DIE
it 19 t

dt
Itt K
It

Notation alert a doit represents
dy one derivative
dt

I dax 2 dots represents second

The derivative

Usually dots represent derivatives with respect

to time



I X int y j t z k Veit Vy ft Veh

a ii it if I t E k axitayft Azt
Tx is subscript

Aagain I I a via differentiation

a I t via integration

sometimes
we can do differentiation or integration one

component at a time

eg ax v x by integration

X Vx ax by differentiation

Finding cornaponents of a vector along a direction

given by unit vector in

Given b some vector it's component along a

b I

a Magnitude of vector is bxitbyjtbz.tt
is fi

i

I carport
151 11511 fb F E

Pythagoras
1hm



unit vector along To I bxitbyftbz.tt
151

fbit by't bi

Examplet Projectile motion without drag 2B

Y n

m
Given acceleration i

alongx direction ax I o

Go Yo along y direction ay if of

giver initial position Xo

given initial velocity Vio Vy
determine Vitt Vyft XH yLt

X direction A O dI o is like
a ft

It can
integrate

VX f t wit
t

ax faux fought f odt o

to
G Uxo t to

I vagi so Vx Vx 0

ANS VxG Uxo constantvelocity

Yo
Vx Uxo

xlt j.fdx tf.vxodt fvxotfe
vx.lt to



X X Uxo ft to

Xt Xo t Uxo t E ANS

Y direction

ayy
f

defy g dry gott

to
dVy got f gtfo gct to

Vytt
Vy Vy gct to

VyCtl Vy g t to ANS

Xlt x.tt yLtIdt xo tffvy gLttoDdlt
xotCvyotJe fgtzCt toIJe

Xlt x t vy.lt to gz
t to

ans

Plot Htt vs yet 4 motionaraisdaa



Example 2
e

Projectile with linear drag

A ball is thrown up at some angle in the X y plane

y is vertical The acceleration is given by
the equation a g CT

M Given Xo Yo and Vio Wyo determine

VxLtl Vyft Xlt y ft at t o

we are given a vector equation for a GF CJ

Let us get scalar equations for the components

ax and ay

Noting that I ax in tay j and J Vii t Vyj

Plug them in

axit ay j GI c VxitVy'T

ax it ay j Cvxi GI cvgj

ax it I f Cudi g cry j

Equating i terms

ax Cvx

Equating I terms

ay g ay



Note the accelerations are known as functions of
velocity

X direction ax cu

deux CUx
dt t

fdv f cat
to

Xo

Anandi acts

ln Vx bn Vio Cft to Say to
o

bn et
givers

Exponentiate both sides Ela I p

ln VI e
Ct

Uxo

Vx Uxo e
Ct

ANS vitta

Lt Uxo e
Ct
AND

e

t
To get Xlt x t JVxtt d't

b
t

X t f v e Edt
0



t

X t vx.to e ctdt xotVxofe
t

o

xotvxofeIt eI xotvxoLe II
Xlt

X t V o c
x x le

x
e

ydirection
a g cry DI
t de

f gait fatto
Yo

qt
I t o at.g

et

lnfggtf.eu
at guy e

g t cry

gtcvy fgtcvy.ge
Ct

et

VyLH ANS

C

This is a function of time we can integrate

directly to get yal



t

YAI y t JoyE dt

O

y.tt f gtCgtg
t

at

yo gtf gtfo
e
Ct

Htt yo gtf gta
e 1 ANS



 

















Manoj Srinivasan
If you have a vector e_t = a i + b j
then a perpendicular to this vector is -b i + a j
because the dot product is a(-b)+a*b = 0.

b i - a j is also a perpendicular.
So e_n = perpendicular e_t and is one of the 
above two perpendicular vectors to e_t.



 

RELATIVE MOTION

There is no such thing as absolute motion

Implicitly when we report it or I we are often
assuming that those 5 or a are relative to

the s h assume if not specified

eg car at 65 mph relative to road surface

We can ONLY speak of relative motion

Linus
Two objects A and B

Define ftp.n TL velocity of A
relative to B

q
relative to a common reference eg earth

surface
Vector equations

and does not work for velocity magnitude in general

Three objects A B c

given Taye and TBK

then relative velocity IyB T T

JyB Tpg TA TBK Tayo

these equations are called Galilean relativity Galileo

as opposed to Einstein's theory of relativity



Acceleration

day IA IB
relative to earth's surface

dayz KAK 136

IBA TAIB

a
ay

read as acceleration of A with respect to B

a relative to

Eixample 1 Given Ta 2T m s with respect to

TB 3J m s

earth's surface

then compute TAIB THA

Tales_TA TB 2T 32 2T t 37g

Bff TB TA VIp 24 3J

Exampleis given Ta Zhi 3T mis

what is Tagg

Jay
Zi l Ji 5in m s



EXampk3_ Given Jay 3ft 4J Jaya 2T 3J
compute TBK THA

Tiga TAK Zi 3J zit 3J Mls

n

TBK IBA 4A
in

Tay
2T 13T 3T 14J L 2it3j

3T 4T 2T 3J i FF m s

Example 4

Car on a slope 0 30 has acceleration

a with magnitude 5 Mls witha

A respect to the earthxgo 30 a
a i Someone drops a ball within the ear

and this ball has acceleration g 9.81
m s in the vertical direction downward

with respect to the earth

Determine Icayewen
a ballyear

Vector

Erin Ibaleyeana 9 81 I Nsu

I Icarleathl 5 Mls



Icarlearta Ax it ay I unknown components

using and Taytay 5

ax't ay2 52 25

Icarlearia is along slope

ay ay T.sn
Ax

use in

Thoryearly 5 coso E t 5 sin of
5 cos 30 i t 5 sin 30 J MI5

Icarlearia
4 I

Ibaka Iballlearia oicarleark

9 81J 4 33 It 2.5T

4 339 12.31J MtsuIbarlaw



E 5 Above problem rearranged some of the

HW problems

Car accelerates up a slope 0 0 not known

given tacarlearial 4m15
given a

bayearch 9 81 Mls

grim fabayearl 1305 ME

Determine acceleration of Iballycar
a
easyearth

etc

Icayearth 5coso It 5 sinOj
v

715 sino
Thakkar Iballlearia

I
Catleark

5coso 9 81J 5 cosof 5Sinoj

5 Coro i 9.81 5since j

Tabakkarf 13 05 f t5sino
T

solve for 0

13 0 5 5 50 y 9 812 1 52m50 2 9 81 Shino

52 9.812 1 2 a 81 5 since

since 13.052 52 9.817 42 a.si 5

I



o sin ft a

7

plug o in a
Carlearth

Plug 0 in to get Ibaka



 

CONSTRAINED MOTION

CONSTRAINT RESTRICTION ON MOTION

Y wire
moves on line

particle moves on particle

cx.NL wire
deff

4 3

a mine the relation

Xty 3 between Ux and Vy of
particle

b determine relation between ax and ay of particle

Vx X Vy it ax ay if

Solution t y 3

a Differentiate with respect to time

dzelxty doe 3

itu vxtVy vx

b Diff once more

i a ta A b



Ex simpkf.MY Assume the rope is inextensible

what is the relationship between

VA and VB
y.atatItIIu equivalently what is the

relation between ya and YB
VA

ya I ffry
Total length of string ya tarty

constant

Yat 9kt Y const

YatYB co

Y'at Ypg
0 VatVB

o

Va

Aa



E 2
in in a Find the velocity of B given velocity of

A is 2ms upward

a
Find acceleration of

A given acceleration

of B is 3m15 downward

B Tonstrained motion

All ropes are in extensible length is constant

Todi find relation between VA and VB 4

K t a AA and AB

Solution

no t

b necessary

B

stops i write down expressions for lengths of various

ropes

Blume ya t AR t y t AR t Yz t const total length
const

Differentiate

Yat O t il t 0 t y to O

Ia ti t've o

q



Because y Ya y in

Fat Zip o

Areenrope y t TR t y t const total length
constant

Differentiate

Yg to tyg to O

yj if

YetYg Yes

yity ie y y I

Plug in

yj lip Yi instil

24 ie

Recall y.at 24 so I

in if t 26 7 0

ia 4yBlhis is a relationbetween

VA and Va

where VA Ya VB Its

Because A moves up 4 Ya defined downward

Ya 2 m s IB iffy Iq
0 5Mls



ip o 5 AN

B moving downward because YB defined

downward positive

For acceterateon i differentiate

iia 4ii

gives B accelerates downward at 3Mls

iii 3m15

a

ija 4 s l2m AND

accelerating upward at 12mise

r n

Examplei A particle moves in a circle

y X't y 5

Cxy
a Determine a relation between

x x y X y

b Determine a relation between
x y iii Iii

a Differentiate with respect to time t

d x't ya of 5 o

Ft dt

Recallchainmlei dat fCx dd Ide



Edelgly dogg diff

So d DIY 2x i

Similarly dat f day
44 die 2y y

Use a in

datLx't44
0

Xxx tf yay o

xx yyJ.ir ANS a

Given 3 can find the 4thvariable

b find relation between X Y I I Y

Recall multivariate chain rule

of pig

ftp.dpfetdohg.dfue.dzlxx
h p or where p X q X

L pg

i

g p t poi



dat xx
I I xx

x at xx

similarly dat yy y y ii

differentiating

da
x it yy o

liitxiitiityy.TT



 

9
Thus far what we have covered KINEMATICS

Cartesian polar tangential normal relative motion

constrained motion

kinematics calculus and geometry applied
to

motion without considering forces

TODAY KINETICS relation between forces and motion

E ma

NE SSE AWi

applicable for a single body or a collection

of bodies

For any body say a particle the sum of all forces

on this particle equals mass times acceleration

ja
TEs Eti mass m x acceleration a

T of the particle
Ten sum of all

forces

For any collectionof objects with
masses m ma

El
the sum of all external forces on these objects I

External EE m I t miaat Maia

mass m T t
where Ai acceleration of the



Procedure for solving particle dynamics problems

1 Draw FBDs Free Body Diagrams
As many as necessary Usually one for each

mass particle in the problem

2 Define coordinate systems sign conventions

3 For each FBD or mass or particle

calculate sum of all forces

4 For each FBD masslparticle write an expression

for the acceleration Cartesian polar tangential
normal

5 For each EBD do ZE Moi

Few quantifies given few unknowns

I
write as many equations as unknowns

SOLVE

Sometimes need to use constrained motion

to get additional equations relating

different accelerations eg for pulleys



A couple of things

i ltowaccusate.is m a

Accurate to about co
s relative error for

objects moving at human speeds a speed of light
much less than

At much higher speeds need a relativistic correction
Einstein

2 Withrespecttowhatshouldwemeasureaeceleration

for EE moi

Te is measured with respect to inertial reference

frames

Examples of approximate inertial frames

y

eartissurfaceT we will use this as an approximation

center of earth

more center of mass of solar system

acwwtp center of galaxy

Acceleration due to gravity
9 up

what is its value 9 2

textbook answer Wolfram

g changes depends
on

standard value alpha
location on earth Eg Columbus

g
9.82 Mls

as low as g 9.79 m s



Example Given
all surfaces are frictionless

pulley massless frictionless

18 mu pulley rope massless a inextensible

assume the tension in the rope remains

jane over its whole lengthy
canbe shown

rn 10kg Ma 20kg based on the
0 600 other assumptions

Determine accelerations of M and Mz

Sign conventions
downward

ay up slope tai ft n

f
meDf 192 i

Ml

FDDs FBI FBDI
ft

I II
f 1mg

o
oTiong

w ma in each relevant direction for each EBD

FortBD2 mzaz Msg T downward positive



FBD l
f i n alWOT F go

gin
Enigma.ro

ma a em

Upslopeipositive m a T mgsino

perpendicular to scope
O N m geoso

no acceleration In to scope

Howmany unknowns
i al ar N T

3 equations need one more equation

kinematics constrained a Az relation between

motion accelerations

From N mgcos

Use in m a T mgsino

i Mza Mag T

Add Cmtonya IT mgsino Mag H

g ma m Sino

ai lmamm.im
9 a YmmTas



 ideal
Note If you have mass frets pulleys and pulley

massless ropes the tension in a given rope is

taf constT.ie same all through the rope
gT TT

course 07
T

1 t
T

Hotel this follows from a future topic i moment balance

TaeYI Later we will have pulleys withm asses

use
and friction and we can no longer assume 1 is constant

3,7 unequal tension

Example idealpulley
TI

pulley massless frictionless

ropes massless a inextensible

Y T.yam.org T ideal rope
v pB m force P 200 N

a Determine acceleration of M and of pointAb Determine force exerted by pulley on ceiling
Solution

EBD1 FBI2 P Tz
q
pisign 1

convention PT P T P f f P T
a 4 7mL

fo ptMog Tz ZP Mpaley
apulley

For I ma p mg
I 2P o

a
Rmm car

E 4

ANS b



Example
7 m 10kg

Mz 10kg
of 9 81 M s z

all pulleys e ropes ideal

on

massless frictionless inextensible
Determine a a

sign conventions FBI
FBD

HE
Eni

17h
Mig Tv

exIE111
mug FB

miyamoto i 4
m V

Egil f migos

mirin major
mngimo

For EBD3 pulley for FBD4

P 2T Mpullef apathy 2T Tz empathyzaps
P o

Tz

I



FBD2
up's HIMgsino ma a m.gsimo ma

farslope i Ni mgoose o fo accel Nz Meguro
o

a Phmigsin V
M

are E Migsino P Msgsino V
i

Mz Mz



 

Example A car is going in a circle in the horizontal
Y car plane with speed v 20 m s and rate oftop r

view as change of speed v 5 M s

The car interacts with ground only through

gravity friction horizontal and normal reaction

is far vertical
toplane

Determine the frictional force Ff
topview Mars m 1000kg radius R 20 m

Y fEf No wind resistance

x topview FBD

Yr
o Fv

foyer as
iBk

X
x

EE ME in horizontal direction
W polar a

Frfr t Foto m voi Er t r Eo

centripetal tangential

Given V 20 m s J V to rio

12 20 on
it

vs Rio I Ip
2 trad

i Rid E if

ozsradls.ie2011
2
Er t 20 25 do 20Er t 5do



EE Fr Ert Foto 1000 20 15Eo

Friction force f soooooEr 15000 Io N

radial tangential

force force

P t
centripetalforce provides increase in

speed

the pendulum spins around
massless

Example rod a Determine the value of 0

1 41 in terms of o m g
L when

the force transmitted by the red
o

g lo Th

a Determine in terms of m g L O andpossibly

r r

EBD polay get fer
Fgod

Be
coordinates

r
0 Img r where 01 40 O

in olr l

mg.m
sina.tw a Cry Tert neg standard

E ME

along Eu Frod mgcoso m rot

along Eq mgsino m rot



Pandit Fred ungaro mv
Z

Frode 0 given

mrif mgcoso

f g Igo rad g if Cog
2

frfrO fmgcoso
Ansel

it.ggcoso
o costfo

b frit nfgs.no

rife gsino o

9 Ian o it o if of

rt E gino

ggs
ANS b



 

Today TWO TOPICS

Coulomb friction
Work Energy principles

Friction
viscous friction

dry friction
dry Coulomb's laws
surface Coulomb friction

Coulombtriction
static friction
kinetic friction

consider a block sitting on a table Push with Feet

f
N

text text

My
what is Friction

Ffiction 0mg

For small enough Fext the mass m does not slip
ship E relative velocity between 2 contacting

surfaces

Ffiction Fext

as long as Iffrictionl E GN

µgN is the static friction maximum frictionforcet

possible between the 2 surfaces



Ms static friction coefficient

i coefficient of static friction

In thisexample if Fext 7 I µsN then the mass

starts slipping

when there is flip relative motion between contacting

surfaces the friction force has

magnitude FfictionI µkN

and is directed opposite the relative velocity

µk
kinetic friction coefficient

More generally

If there is ship IEfriction MKN

and opposes slipvelocity

If there is no slip Epiction whatever it takes to

avoid slip as long as

I ffiction E MsN



Will it slip 2 When does it slip

1 Assume there is no slip
2 Compute friction force using EF ma etc

NOT using pen
Can assume Efrich's in ANY

direction

4 If computed magnitude Efiction f µsN no slip

else there is ship

Given
Example
f

i
Two blocks M Mz

E No friction between m2 and slope
e

Ms andpea are the static e

m2 kinetic friction coefficients
flee Kno friction between m and Mr

External force F applied

Under what conditions will m slip on Ms

FBDs
or

mis e

tr pea
pinata l Ypref L voi

in major mis



Assume no slip 4 find Epic t

9
No slip Both masks have some acceleration a

F

E mgsino Epic Mia

Elsie megsino m a

M Marmo o

Nz N Mafioso 0

4 91 i 4 unknowns N Nz Feria a SOLVE

Find Efric and Ni

Then Condition for No SUP Fpi yesNi

condition for SUP i IFfic I 7 Msm

Solving the equations i
N migcoso

To solve for Fpie need to eliminate a from
and

Do Im
arid

m
i

Im i F m gSino Epic a

M M

Im i Fino a

My



Subtract Im 301mi

F
mmigimon fame Feng maggio

a a o

Im gtfo Eric tm t Im t grin 0

My
Fai
myth

mF
LmtmT

So condition for slip
Epic 7 µsNi

µ yusma

Generic If the friction force

is say a vector in 3D or 3D like

Epi Ex Et Fy j or F r I t Fo Eo

then no slip when IFail fifty fifteenV
MAGNITUDE



 

Work and Energy
Important

work mechanical work of a force
ennmlmecnmiae Y.TL energy Iitind

other things
power dWork

dt

Exampte

mM
F sumof all forces

E ma mii dupe

F Mdv
Ft

Fv m vdy
dt

J FV dt

fmvdvffx.aeSedx mjvdv maEiii zmvi Izmir

dt i i
Xi

f
Frat ffft dx tmvftzmv.FI

i
i w
Define i Work done by Force F change in kinetic energy



Define i KE of the particle
mv

is called the thom

work done by all
Total change in tee

forces on an FBD of all objects in
the FBI

From we see work J Fdx JEU dt Idf dl
m

Define power
mechanical power
dwork
It

In2Dor3 dot product

Mechanicalword JCE.it
dt JF.dx

scalar in

quantity power e E i

kinetic energy of a Izmir't 1am vx'tUy'tVI

particle
in 213 Im x't Vy 1am Vit VII

m Vitti



If the force is a constant

W F DX E dx F Xf Xo

i i ONLY true

force displacement
if F constant

Not true in general

in 217 313 if E.is constant

W E Ff

Example Determine work done by gravity on particle
a

mass M when it goes from position Ei to Ff
Lxiii in

IV Gf t t Egranity Mgk constant

m

work JE di F HI Ti

i
mgk Ff Fi

If Aff t yf j t Zf
Te Ti Xii t yi j t ziti

Work f mgk Xilie t Yf Yi I 1 Ef Zi

0 to mg tf Zi

work by gravity mg tf Zi myZi MgZf



Define potential energy mg z

done by gravity Pei PEF

J
dydffndhotn

PEf PEI path ONLY

final initial

potential energy is just a convenient way of
writing work done by some forces called

cons.mu eg gravity springs for

which work done function of only final initial

positions and not on path

Work done by conseforvualsive Pei PEF

N Qs friction other external forces

whose work done needs to be computed explicitly via

integration may depend on path

way theorem total

Work done by
all forces

r
Change in ke

Kef Kei

if all forces are

conservative then work done PEI PEE

So PEI PEF KEF KEI



PEitkEi PEf ktf

We call PETRE total mechanical energy

So is called conservation of total
mechanical

i

energy

If only some forces are conservative

then the work energy theorem is

work done by all
forces

Change in ke

work done Work done
change in ke

by conservative big other

forces forces X notgravity or springs

PEI PEF Wist KEF KEI

Rearranging

µy

rPEitkEi Wef
PLf

kµ

total initial t work total final
energy done by energy

other forces



Another version useful for problems

KEF KEI PEF Pei
work done

by other
forces

Ot KEftPEf KEit PEI work done by
other forces

total final total initial thou conservative

energy energy

Example Ideal pulley and ropes
T M lo kg Mz 20 kg

F 100 N

Masses initially at restI o t

b Yn
m
Determine the downward velocity of

M2 when mz has

IF 400N fallen by o.im final

let's use the work energy version i

Ef Kei PEF Pei work done by
other forces

Rei 0 starting at rest

KE f 12M Vy t M2VI



where Vy and Vy
are final velocities of the

masses If we assign sign conventions

4ft Vet f then if Vy
V

V2f V

So Kef M V Iz m C
V

Iz myv2 lot 20 V 15 u

Work done by F Force displacement
because E const

Oo o l to J

PEF Pei

gravity y
Yu

Mag Yee Yai t Mi g Yy Yi

MagL o lm t Mig oil m

m

Y goes y goes up
down

Got toy coke



so 1 co to

PEF PEI to

Put everything in

kEf KEI t PEf Pei Work by
F

V o L lo to

15 V2 20

VE
Syfy

v t M s

Sign picked so that Ms goes down

on goes up
Lf

M s

I I



 

Example displacement

d n FBD mg
71 n f vconstant f i F

i ri s

I I nNi 1

Work done by Fe Fd

Work done by mg mg o 0

More precisely work by mg y mgT di

0

Work by Nrj Nrj di o

Work 0 when fora perpendicular to motionof
point of application of force

Remarks Similarly ideal pulleys do not perform work
pulley

on ideal ropes

putt forces between

pulley a rope
are

tar to relative
motion

tension in

similarly ideal ropes connected to masses on either end

perform no net work The tension at pointA
tin T
I performs equal a opposite

f µgo work to tension at point B
A They 1



If the ropes and pulleys are not ideal eg friction mass

there is work done by them often negative transmission

losses same for gears in cars

Springs
They have a rest length also

a mess called free length stress free
length unstretched length Let

us call this lo NLT INITIAL LENGTH

When they are at this length force transmitted by
them o tension o

stretchfrom lo

F Fa mm F k l lo

T Ie unstretched
Spring current or stressful
stiffness length length

A stretched or compressed string has

potential energy PE 12k l lo

same PE for both l lo 70 and so because of the

square



Example OB is a horizontal line B is pulley center
T

Wii Wa The Slider A starts 2M below
o f B the level 013 and is pulled
A r

slidery myong Igg up by force P 1000N starting
no friction P from rest Find the velocity

g a 81 k n d
of the slider when it reaches

level OB

Assume pulley radius is negligible

work energy theorem

PEI t KEI t work by PEF t KE.f
forcep

KEI o
z

KE f Izmit often
it is simpler to write PEF PE

PEF Pei MgGm n than individual PE
the amount by which the for gravity

mass rose

Work by force P Force displamente because P constant

P ofpoint
c

By how much does point c fall

II
m

f



Because ABftB4 length constant

AB lit 1134 ABL t lB4f

1134 1134 AB i IABIf
55 I distance by

which c

drops

Work byP tooo Fb 1

Putting everything together

PEf Pei t Kee KEI Work by P

mg 2 t my o oooo Fy l

4 9.81 21 t 14 Uf Ioof E l

Vf Solve foo f5 1 14.62

whatever



Example i

m 1kg

In Mz 2kg
K 1000Nlm

Mr

mi II
le
it



 

Example i

Mi 1kg
um initial o.im s upwards

In Mz 2kg
K 1000Nlm g 10 Mls

Im initial stretchof
Mt II spring relative to
k unghetched

Si o 05 m

1111

Determine Max stretch of Spring Sf

when the masses momentarily stop

Worf
PEI t Kei t work by PEF t Kef

other forces

PEf PEI t KEF KE
Work by
other forces

KEI Given Vm f o l Um f o 1 m s

m loD t MaloY i o D't X oD

0021 t
0.01 0.005 to 01 0.015 J

KEF 0 when the stretch is maximum the masses
I

just come to rest

If Sf final stretch si o o's initial stretch k ooo

Mm.gg
j
qfqI.IPEfPEi spring k Sf k sit

500 50010.05 unstretched Initial Final



Pef Pei gravity Mig Sf Si Mag Stasi

Massi goes Mars 2 goes doin
yo by Sf Si by Sf Si hence

as the spring the negative sign
stretches

I do Sf 0.05 2 10 Sf to 05

O 5 toSf 20Sf I 10Sf 1 005

Work done by other forces o nothing but gravity t

springs which are

accounted for in PE

Putting everything together

PEf PEI Kef Kei work by
other forces

500Sf 500 O 05 lost to 5 0.015 0

spring gravity

solve equation for Sf Quadratic equation



REVIEW FOR MIDTERM I

Had i ID motion

Diffie position velocity acceleration

In accelerate velocity position

t

If a is functionof v v fact dt
0

If a is function of S Jvdv gals ds

If a is function of v i f day Jd't

If v is function of ti fds Jult Dt

If v is function of
S

JTfs

Hwy Coordinate systems

Cartesian F xi t y f t 2 I
J X i ti I t Eti
a ii it if I t Ete

Tangentialnormali I VE

Polar firer

Iii E Fei
I r Ert ro fo
a fi ro

2 Er t froitziri to



Conversions

Er coso E t since I e coso der simo to
a

Eo since it coso j g since Er coso Eo

Hw3 relative motion

TAIB TA TB Jay IA IB

Tay TAK TBL AAB TAK A B c

Constrained motion eg relations between velocities of
different objects or different direction

due to constraints

eg masses connected by inextensible ropes

in pulley systems

HW4
FBI diagrams for each body typically

sign conventions coordinate system
Cartesian
polar

EE ME for each FBD tangential
normal

write vector equation or

write scalar equations in tar directions

possibly use constrained motion length of pulley

ropes to get an additional equation

SOLVE the equations for the relevant quantities



HW5

PE i t KE i t Work by PEF t Kef
other forces

PEf PEI t Ef Kei
work by other forces

work J F di JLE f dt

If I constant work I I

II gravity mgy y measured upward

spring Lak e e
k stretch

in

change in length measured from
the unstretched or the force free

length lo



 

LINEAR IMPULSE AND MOMENTUM

For a single particle

E ME

Integrate both sides with respect to thine

tf KEIde film
a at mi MI mui

summarizing 4
g EE dt Mif Mii

vector
equation

ti

change in linear momentum
called Impulse

for the particle
of force EE momentum G MT 7

This equation is called the Impulse momentum relation

The above relation was derived for a single particle
But it is true for systems with multiple masses or

particles For multiple particles

I Mia t Mz a z t

sumofall
external forces momentum for all masses

tf
Edt M T ft Mary

1 Mii t mzt.at

initial momentum
final momentum

Total impulse Change in total linear momentum
OE



Special If EE E no force in any direction

then Impulse JSF dt
5 over any time period

change in total linear
momentum

I

ee

Milf t Milf 1 M
Nf

M T t Metz t TMNTwe
Arrb

Definition If Fj is position vector of a mass Mj

then center of mass position
Fcom M F t Marit t Mari

M t Mz 1 tMN

Icom M J t Ma VI velocity of centerof
M t m t Mass

Total momentum Lm tm t Thom

total mass Jeon

Eqn can be rewritten as

6 Tcomf Iman Thom

Jcomf TCoMi
rel to an
inertialfram

If there are no external forces

the center of mass velocity does
not change

Cannot change



Example
astronaut in outerspace far from gravity

ZE 0 or them

1 they cannot change their Icon
2 If they start with Icom E remains zero

for all time scary

How to move throw a shoe same principle as
a rocket which throws

gas
Comof shoe t person remains fixed

while each
Troves

in opposite directions

special case 2
T EE 5 in some directions

Aperson

y µ
zero friction

EE 5 along a

ice because no friction

r 6mg
alongf t I i EE T N mg

D
ri p µ if N mg you can stand

up or jump

Momentum conserved along i
r

but not j because you can pushagainst

the ground to make N 7 mg



Example 3 Angry bird problem

A single mass m long breaks up into 3 pieces
m 2kg m2 3kg and Mg 5 kg

Just before breakup the velocity is

g
E

Ji 10 m s at 45 to horizontal Iea 5

Just after breakup the velocities are

for M i Iif lo m s at 60 to horizontal 60

for Mz unknown Determine

for Mz Tsf 10 m s at 60 to horizontal

finally you are told that the breakup happens in

inf me arbitarily small duration o

Solution
Impulse Change in total momentum

Impulse
t

EEde gravity drag dt

may I ing tf til I o as tf ti o infinitesimal
time

Impulse 5 because we are integrating finite notinfinite
forces over infinitesimal time approaching zero

So i change in total momentum

Initial momentum final momentum
Mti M Tft MIF t m3T3f
I i

10 locos45 it to sin 45 I 2 10Cos60 it to siren66J
3 Vy t 5 10cost6oj.it osinG6oJj



7071 I t 70.71 I lo I t 17 32T t 372ft 25 43.30J

35.71 I t



 

COLLISIONSL
BEFORE AFTER

Wii TT Thi Vy f p UH
0 O OO
M Mz

Usually takes place in small duration at

As discussed last lecture for the two bodies taken

together SF may be gravity drag friction
SE finite

with tf ti o and EE finite

tf seat
ti f Total Total

Recall Impulse Final Initial
momentum momentum

O Change in momentum

Momentum is conserved not because EE 5 but

because Stat o

ti as tf ti

what about the internal forces between the

Hiding masses

Seay Fiat is the force of m on me during collision

and tint is the force of Ma on m

internal reaction force



During collision

First
9 Mz

M Fint

we can apply impulse
momentum or I moi for each

mass

M goes from Tizi to Thf in Ot Ef ti
o

if Tuf Tai is
NON ZERO

then during Ot the mean acceleration

Ii Vy VI as Ot o

Tt
Finite change in i in at o a a

a F int o the internal force

In typical collisions Fiat large

idealized as Tint co as a so

Impulse of Fist tint It Ma Ff Tzi

in
times o finite change in

momentum

Finite impulse from infinite forces over

infinitesimal time



Is total mechanical energy conserved

over the collision

Not generally collisions may

have a mechanical energy to
usually o

KE heat Sound mechanical damage etc

Explosions are like reverse of collisions

eg internal chemical or nuclear energy
KE so 0k 70

Elasliccollisions
Amechanical 0

energy

Note for collisions with a o

Dmechanical energy
OKE

because APE o as Ot o

no change in position in a o

So no change in PE

Types of collisions

E OKE o

Ine i AKE Lo some lost energy



Plastic collision or perfectly inelastic

The two particles have same velocity after
collision stuck together

Thf Tif

The maximum amount of KE that can be lost

in a collision is if the collision was a plastic

collision

Note because of
momentum conservation one cannot

generally lose ALL the energy in a collision

between 2 freemoving particles unless we

start with zero momentum

Coefficient of restitution for particle collisions

e 1 elastic collision

e o i plastic or perfectly inelastic

0 seal inelastic

I e VA VB f
Definition u

of Ca VB
A

e speed of separation after collision

speed of approach before
collision



E Ball A hits ball B while both go in a straight

line Ma o 2kg Mps 0.8kg Va I ms UBI lmk

Determine the post collision velocities

for 3 cases a e I b e o 5 c e o

Scone method for all three cases

2 unknowns Uaf Yzf Need 2 equations

MAVai t MBVBi MaVAft MBVBf

e Vaf VBf

Vai UBI

ai VBi e µAf VBf

Solve the 2 equations in 2 unknowns

DONE



 

ANGULAR MOMENTUM

Consider a particle P moving with velocity Tp
with respect to some inertial frame

Given some other point Q

the angular momentum Ftpa of particle
P about point 9

is given by
f

vector cross product
Velocity need not be

angular Hpg Fpax Mtp
with respect to 9

momentum

position vector J
linear momentum

Q need not be fixed infrom A to P inertial frameIp Tpla

sometimes called moment of momentum

What are the properties of this quantity

Let us start again from E me

EE map m dip
It

Fpgx IF Fpqxmdt.gs

LHS Fpqx
LE Moment of all forces about a Etta

of total moment about a



RqH
s Fpga x m date da Fugx mTp da Pla

if Q is fixed

why This is because Idf Fpga
xMip of a

X MVI t FpgaX Md

Tpax Mtp t Fpgax mdip
It

E t Fpgax mdVaI

Putting and together we have

LMK dq.tt a if Q is fixed

Soonof all moments
about q

rate of change
of angular
momentum

analogous to EE moi

d mo

A
rate ofchangeof
linear momentum



Angular impulse momentum relation

the dArya
dt

Integrate both sides
t tt

Liya dt f dat Pla the

O
O

playing
the initial

Called angular o

impulse change in angular
momentum

JENA de Imaginal Igainitial

angular change in angular
impulse momentum
integral

analogous to f seat change in linear

momentum



When is angular momentum conserved

t

In general if f singedt E

then angular momentum
is conserved

This can happen if 215,4 5 No net moments

about point 9

Even more special case central forces
P

Exaimple EARTH

Q E

t SUN

Ignore force due to other planets approximations
Assume sun fixed

then Eigg
moment of forces on earth
about the sun a

Fpgax
F 5 because these are

parallel vectors

Hiya Ttearleysm conserved



Example Elliptical orbit of
earth

r
t

fVA f f
Earth Earth at apogee c

B Aat s
perigee f

B I
I I

Is a

angular momentum conserved angular

Hays Fays X Mfa momentum at A

ai x m Va mavati

angular
because Tx j Te

IB momentum at B

Toysx mis bi xfm f Vpj
MbVB I

By angular momentum balance

MfaVaKY Hbv KY

AVA BVB





 

All dynamics equations derived from EE moi

an ordinary differential equations ODES

2nd order ODES

a
2ndderivative 2nd order ODE

mii LF

How to solve such ODES

analytical methods i closed form solutions or

pencil paper solutions

usually applies to simple
problems

eg one object one degree of freedom

nivner hods i using a computer

10005 of books methods

Euler's method simplest method
we will
do this

Runge Kutta more advanced you may see
this in your
numerical methods
class

Euler's method

het's first do first order ODES
DX v t

at



find XH given Val X o

dx Ht dt

fox vCtIo

initial x o say pick small
at o ooo I s

X O ooo 1 X o t o Otw
o ooo 1

stepping

forward X o

00,02
X o ooo l t o ooo1 Ot

in v

time

in
increments

of
o 000I

5

he

to get
Xl actual time

iot x Li Hot v Li Hot ot

to simplify

lxlistlil xlistli D vlistliDot.TT
Euler's method

XList i x t where t i t

for first order ODES



Second order ODES

Mii Ntl

Ma Flt

att Eltym

use DI a or aot

both dt

ftp.iffe dxat
v ox rot

a
using uk Xo VG Vo's

and
update

using for I Ii mumpoints compare aci itgiven

Lil Vci 1 ali dot

i Xli D vci 1 on

end

coupksdsyskmofmany.by
pointmass ji f Hit Xan

Vt 42
ifqy.Lx Yi if complex function
3
9,4343 in of Xi Yi Yi Yi
Lx YD

Ii i



for I
Ii hungpants

v lil Vx Li t ax Li Dot

x Li x Li t Vx Li Dot

i

end

Thus for a more complex system we

just update the position velocity

of each a every object
in each direction

could be linear or angular positions velocity

Thus same method applies however complex

the system

Need It to be small for
the

approximation to be good See MAIL.AB



 

So far we've looked at particles

kinematics geometry calculus

kinetics Esma relation between

position

pon

µ
forces t motion

Rigid body simplest object for which
both position orientation matter

position could change

IT ovientation could change

Deformabtebody i can change position
orientation strap

Rigidbody does not change shape

Angular velocity for a rigid body 2B

Consider any 2 points A and B

on the rigid body

O angle made by line AB
with some fixed axis

in the plane say x axis



dfa angular velocity scalar of the rigid
body W

angular velocity vector To
WI

O p constant because rigid
body

de de o

I dt dt
to ie p

I ik JI

50 angular velocity
I is a property of the

object as a whole does not depend

on choice of
A B C D

Also we do not have to say

angular velocity about
a point



Angular acceleration d vector

2 scalar component

i
properly of the rigid body's

motion as a whole

Twobigrelationsinrigidykinematics

i i'a'III Ifs
rigid body

Awh

Va TB hT tA pF

Ta Ta in x VI

Vector
cross

VyB
WTT product

Because A and B are on a rigid body the



only relative motion between A and B

can be a rotation of A about the
other

TAIB I X Typ
w WI perpendicular

Toxrates to plane
TAKER B

r

A
A B

Iq perpendicular to K 4 Fab as if

it was rotating about B

E a x is I Iar to a and b

Relation 2 i accelerations of
A and B

B

Jari
I

www

aa IB tIxFyp.twx wxFaqg
I I

cross products



THA r

wxlw
A

tox tix FIB

centripetal acceleration

of A
wrt B

FAI in

with respect to

B

Example Given some rigid body A B on it

Given Ja zit 4J W 5k

A 0,5 B 3 7 in Cartesian coordinates

Determine Its

Jpg TA t I TBH

Jiya FB Fa it 7 I of 15T

TBH 3T t 2J

T it 4T t 5k x ziti

3ft 4T t

Lig Iz Fol c determinant



3ft 4j t i fo 2 5 F o 3 5

t I fo o

3ft 4J lo i t 15 J tok

TB 7it19J

Alternative to determinant

ix k

a in
A a

Text j ink t

E j
it

5 E x 3 it 2 j
15 I Xi t lo EX I

r
15 g t lo l il



 

RIGID BODY KINEMATICS CONTINUED

E Is t wx.IE
B

aa
a Bt Extra Fps Tux TXFy

I Aa IB T TXFay THE
Peaster

to use scalar
w

D WI magnitude

T t scalar of W

vector

angular
component

velocity

Given
E e

I Esiason
W 3 rad s anticlockwise

I 4 radls clockwise

AB 3 it if Mls

Qi Tea

Sd By convention toe 2 w is anticlockwise

I 3h racks Fa Zit 3T

I 4 I radio FB 4ft 6J
clockwise Typ 2 3 I



Qa I B t Ix Fa p
w FAI

Citj t I 4k x f 2T 3T 32 2in 3j

3 it j t 4 1 text t 4 3 x j t 18 it 27 I

3T TI t 8 j t 12 L T f 18 i t 27 I

I 3 12 t 18 t j l 18 t 27

Tx j e k

iii Ex K I

Puretranslation

go

a Point have same velocity

K
o

mini
p

Velocityof P'smagnitude scabs

linearly with distance from
0.4 perpendicular to 7



O

follows from Tp Ex tea

in Tpp

perpendicular to Ty
and is bigger if µ is

bigger

Instantaneous center of rotationin

It info then

there is some point 9

f on or off the rigid
B

body for which
info f 0

or

It is as if the whole rigid body
rotates

about 9 at the moment

Q instantaneous center of
rotation



H it

µ
Gian V of 2 points B

draw perpendiculars to

those velocities In and Its

y starting from A and B

B Intersection of
these

ft perpendiculars E

I nhfatfu.at
eous center of

it i
perpendicular bra for any

B
c will also pass through

Q

Q can be outside the body

Twostases
If A and B have velocities that are

parallel



Casey say

i

is mom

in E or

pure translation

Case 2 Ta and TB not equal but parallel

I Connect extend A B
i

Gang
extend heads of

B i intersection

instantaneous center of rotation

4
i

y y



Exampley crank Mechanism OAB is called

f A a slider crank
I

mechanism

I t slider

a few tens of billions in
the world

all IC engine cars etc

kindsofpnoblems given Iot and or Toa

find FB and or Ipo and or

Jap and or Fats

Some of these qtys given
asked other

of
these qtys


































































































Examples I
0A and AB

A
crank

r y
slider are rigid bodies

nft rif
0 e

At the moment shown 06,0 Acl D B 3,0

a Given Doa is 2 radfs anticlockwise

Determine Ta Da and TB

Solution Ja To t twoax Fay because 0 A are on

the same rigid body
To T

Woai 12k Tayo fit I i

Ttf because A 1,1

Tra E t 2E x Itf z tix E t 2 Ext

2J t 2 fi 2 it 21I
Was WA k where scalar wars is unknown

VB VB I because only in i direction

4 Via scalar is unknown

2 Scalar unknowns Wa and VB Need 2 scalar
equations



Because A e B are on some rigid body AB

It VI t To Fagg where Fa If 34 5

ziti

Iit 2J VBI t Capote x 2ft'T

2ft 2J VB I 2W d x E t Qa EXT

2 it 2J V E 2W j t Wag C F

Equating in terms

2 VB WAA

Ag r 2 2WAB

wars I
ANS

W lkrad s

Plug in

2 VB l l UB t I

VB 3

VI 3im



b In addition to info in part a you're told

that I 2 i m s
2 Determine Ioa

Tobitioni IAB table Ioa Noah
w
need to find

AB is a rigid body so use standard formula

Tea IB 1 trap FAI WEB TAIB

w w w

Unknown given unknow known known known

from a

OA is a rigid body So

a
a

Io t doth Tayo wot Faf

Equate tea from
or do 40

IB t AABK X Fay
watsFay Iot Loaf Tayo WoahTayo

T T T T Fo T T
1 Vector equation with 2 Scalar unknowns La Roa

Solve

2 it datskxl 2tt'T L 14 ziti



To t doit x ETI 22 its

so
2in 22µs text Laps Exif 12in I

Loa Ext t Loa EXT 4in 4J

2T 22µsJ da t t 2T I

Loaf Loaf 4in 4

2 LAB 12 Loa 4

I i 2day I dot 4

Solve d for dot DAB

from Laps 2 2 t doa 14
8 t Loa

2 ft Loa I doa 4

16 2dot I dot 4



3 Not 17 t 4 13

a
i rad

Nextime another example with four bar linkage

Rollingwelhout
Wheel rolling without ship

on a flat surface
G

means that at every

point in time the
P

velocity of point P
on the wheel 0

if Tp to then Tp is the slip velocity

of P
with respect to ground

HIE P is the point on wheel currently

making contact with ground
NOT a fixed

point on the wheel



Condition for rolling
without slip

Rolling without slip

ing
oa Va vi o

Ip Ta t WI x Fpga

I Vari t w k XERT

vain Rw til

vatRw
va

Conditionforhost

relation between Vg W such

that Tp 0



 

ROLLING WITHOUT SLIP

I

f t a Tw P is the point on wheel that
L

perf
G Va is currently in contact with

ground
P

G center of wheel

Rolling without slip Tp 5 point in contact

with ground has zero velocity

Slip Jp if not 5

Relation and W that ensures Jp 5

Tp 0

Jp Ta t DX Tyg

Vai t ie x LRj

Vai Rw Xj
Tp Vai Rw C T CatRw in

Je vatRw



If Vp 5 rolling without slip

then VaRwJ
Relation for aa and I

k It turns out we cannot

g agi assume that a p
5

even thoughJp
to

P
Relation between Aa 2 is obtained

by differentiating relations between Va w

Vg Rw

Differentiate aa Rdid Rd

dt

aa

what is the acceleration a
p if not 5

Ip Ig Ix Fpga W Fpga

auf t ab x l Rj w f RI
Aai Rd EXT y w R j



aai Rd L F Ruff

Aat Rd i t R w j

Oi t RW j because Aa Rwd

for rolling within

dp slip

related to

accelerates upward centripetal acceleration

this is the acceleration that pulls the

point P up off the ground

ipso
B Wa
qi Vu RW

1 IBE Tp t wTexTyp

i n to LVE iexkKj
i Vac

a µ vamp
I l r zu L T

l I r
l I I r

r 2Va lt
JP instantaneous

Vp
centerof
rotation becauseJp o



Ta Jp wie x Tap I x KITAI

valiexi vatrixj

vis Vii A

jiii via
Tzvi Vafa

Velocity of different

f
r points on the wheel

41 can be understood
A l

t by thinking
that the wheel

v

P athemement
is rotating

about p

BUI accelerations donor behave like pure

rotations about P ONLY velocities

Just use the formula aa Ept Ix Typ

w2Fqp



EI what is dB Kp most point
B

yw for ant RX o

h oh v ra Rw

no ship

p AB Eat the X Figg W FBK

aaitff.iq iexlRj
w CRI

aai year Ixj
WII

air aai W'Rj
Zanni WRF

7 Zaac

fRw'T

aut

a

fruito



Mongenerdrolh.mg houtskip

2 objects contact
each other

at P and Pz

respecting on the

Z objects

P on object 1

Pu on object 2

Condition for rolling without slip
Jp Ipa

contact points have no relative velocity

Exampley pulleys

Belt has hp on the pulley
w

Given Va Iv and VBT l m s

what is W
if

va
tmls.f.FI

fvBilm1s
R
pulley o 3 m



Think of pulley rolling
wilhart slip on belts

Pulley Jg E G not

D G c moving

I all points on belt han

same velocity until
the point that

A
Ilm

touches con pulley
So far no slip

we need
VD I j

for no slip
To Ij Con pulley

with the

belt on the

left side Ja 5 Tea
connected to A Jc I t wTe x RT

if I WI x o 3in

0.3W j
O 3W I

w Yosn



Ef Va
4in pi

s

n lip i determine Va e w

Qa MaTw



 

Fo leg 94 on Awt

B c way NAB givers

given positions of A B CWats
D So we can computeA

tap Toya Tupi i

Aste 4 WBC WCD

Ib ABC KD
r

For part a do FB Ta t WADI TBH
F

JE JB f WBcI F4B
V v

ID Jc t wash TDK

r
it
to

Plugin in in

Tip IB t wBcIXF4B t Weyk XTik
E from t h

2 Scalar unknowns WBC 4 WLD



I vector egu 2 Scalar unknown

I equation
j equation

7 solve for wage Was

b EXACTLY same r

I a I taek x Fpga Waaf toy

Ic QB ftp.ckxtq WAT THA

0

I dusk x Tpc WIDTH

Plug in then in

everything known except desc e dos

2 Scalars

I vector egu 2 scalar egos
c een

j ga
SOLVE



 

Rigkimmatics continued
A noise
pulley single rigidbody

says Givens i a compete pulley with radii

44Mls R Im 132 2m is a single

q
rigidbodye Two different ropes

being attached If
I 1 velocities as shown WITH NO SLIP

l
t l Fid angular velocity to wk of1H pulley
R2

a Rai r in Velocity Vo of point 0 center of
s j s.rs pulley

Consider fpgyj.cm s Consider

VI To t Text Fa 3 j m s

4 I i Fo t Wh x Rai Ta To t WhX Tayo

4 I VI Rwig 3J To t Wh x Bei
ATo 1 L Rew t

vo 4 Riw
T 3tRzw

Need to solve for Jo and w

Equate To from 420

Ct R w if Ct Rr w Y

Manoj Srinivasan




I
4 R W 3 t Rew
W R tRY 4 3 1

YEtry
1 1 2 43 rads

w yzra

Using equation
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2B RIGID BODY KINETICS different from
f kinematics

player relation between forces
motion

i o m T
Ei m a a

I accelerationofthesum of massof G the center ofall forces rigid mass of the rigidon rigidbody body body

Eateries
Nq Ig I Iad k
w w

T T Ia ma.rs moment ofSamofall momentsabout center ofmassG inertia about
an axis through a

I Ak angular acceleration

inertia i mass moment of inertia

andm Ia

gg

dm T.ndai enffomg
the

inertia from
mechanicsofmaterials
in beam bending



9 Ring of mass on radius R

Rin X Router R

Ia MR

Egf Disk of mass in radius R

Ia MII

EI uniform bar of length L and
mass m but infinitesimal width

L
Ia MI

12

Parallel axis theorem Allows computing the

moment of inertia about a different point p

T I t m lap12

mommr Torment

of inertia of inertia
about P abort h

Radiusofggration ofanigid body
By definition Ia m ragydifas.fm



Moreasefulversionofteration

Original Siya Iad ie

taking moments about G

a about a different point P

IEMypIadktrqpxmaa.LI
If point P is fixed on the rigid body does

not move then

EMTpIpdEI
not true in general

r



 

RIGID BODY KINETICS

Example
Eg

Force F 100N

pulley pulley mass on 1kg
WITH pulley radius R o I m

mats The pulley is a uniformdisk
E t

Find the angular acceleration I a te

fR of the pulley due to force F
p ENT

a Iad K total
about uI 1mg Mia off FRI Moment

FREI Iud KYIti D FRI moment ofinertia ofpulley

Ia MIT
E.a Er a n

angular acceleration

of pulley
ri

computica e a i

F Fj Fpga Ri

MI FpgaX E CRi x EFI Relix ERI
R cross product



 

RIGID BODY KINETICS

Examples
Given

1 pulley mass m radius R uniform
Tm disk with moment of inertia

i I m
Ia Miz

7 rope is massless and inextensible

No ship
Find a acceleration upward of me

b angular acceleration 2 22 of pulley
c tension in rope attached to Mz

d reaction force between pulley and the ceiling

n
e Drawf BDs f ga plG

F I f t T TH ta
VMsg

Mig

2 Use F ma t EM Iad
For pulley

Etta Ian K M 2 ie

Enya ERR TRI
FR TR kY M 2 Y
E TIR mega µ 2fE



Forpathy Formass Mz

EF Miaa _mzg Mza
N Mig F T Mi o

N m g Ff
4 Unknoins d a T N

3 equations so far

If rope has NOS UP relative to pulley
then

c.az
i i iinVpjRwrjqavpRwJ

M2 A Ap Rd

a

p
soT Mag ma _m

N Mig F T o t mzgtm.la I
a Rd a z E Mzg m

M



oh a 2 F Mag ma

M at 2M a 2 F Mit Using

i

plug
these

results

in 430 to compute
T and then N

DONE
I



 

Eixample Rigid body pendulum with a horizontal force

egg.A f
Find an ex for the angular
acceleration D it in terms of

TO Mars m of pendulum length L force
F

O

gf and angle 0 ie determine the

i equations of motion
altssumeOA.am ormbar Solhal Ic m

FBI Reef.tl Etta Idk
F

c Etta Iink t Fyoxmoic
o

Rx Img
PRy Which one to use

Using means that we will get terns
involving Rx Ky in our equations

To avoid solving for Rx and Ry take moments

about 0 so that Rx and Ry have no moments
about o Use egn

mg Elif mgycosokA F
r lo Elsinore
is

c

T.sie lo l
O
e 7
coso

We need to compute other firms in

EMI Ica k t F X Mai
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Examples mistime 3 i s
Shown
The disk rolls without slip on

the floor
Determines a the acceleration of point G

b the friction force at point P

FaFBI
µ o Fi
I f

ftN

Iaa ra
Yamar team earlier

Jp O Vai t WI x IjP

Rolling without
5 CatRw in rza

slip
Vu R for aa

sE m a along
N mg M o

NmgJ



EE m a along

FtFz fmaT

EAT a Iaak

f RI FaR k t E o Te Iad I

CR ER I MILK

ff EumRzLJ
Unknowing air Aa d f N

Note For rolling without slip
friction force f Man

But is determined by solving equations

Analogous to static friction
The maximum value of f such that

the disk doesn't slip is µsN



Use in i f Fa Mz Rd MzGaa

f Fa
Maj

Fit Fz tf Mag
c

Fz Fi F f Maya Mag

2kt F T 3mzAq

au
m
HET ANS a

Use in to get

f FL Maza
Fz Mfg m

2FztF

f Fz 2FjF
ANS b

off
2 2ktt



 

Eixample

Morecompkxpihleyproblemy.iqfTiiimi.fing T.aYg.am
Radm do
mots

mi
Elm solution

In rolls
winger a r It pi

of Dmefkn long
mg

signconventions

a

a.li

o i i n

w
0 i Vi Rw L i Tpa

V Rw o
v a

torn i t Tmg

F ma for disk alongi

o
lmai mgsinoT.FI

finger e
ywgosoalonsir N mgcoso.in



1 Iad k

fRY TRY mid a f T R M 2

f_ mR
z

6 Unknowing i ai d T ar f N

need one more equation
relation between az and X

iii I
a a

Use in f Te
mid mi may

t T m ma

Use in a Rd R
agg azz

a a

Use in
ma mgsino T f



tm
Mq f T

mazzt my mgsino T Htf T

ymai
Mraz T Mag

2MHz 2T 2mg
Add t

3
4
ma 2mHz Mgrino YT 21T 2mg

31ft
2M a mgerino 2mg

a mi

To see if the disk will slip solve for f
check whether Iff 7µsN if yes slip

if no no slip



 

Exampled Accelerating car or block
W 2

Given
B C Block ABCD Mass in 1000kg

g 9 81m15
H a Iµ Ia mCHT

F
t 12
A D H l m w Zm

KWINOfriction
a Force F 500 N

af A and
D b Force F E 100,000 N

Computei i The normal reactions at A and D

Lii The acceleration of point G

m pF

n gpµ
aa t ANS

D

dealer f no movement vertically
F NatND ng m o

alien aq sa NatNgMgJA

Eliya Iga R
y

F HzEt Ng wz I
a o if moving horizontally Na wz ie

I

zithont rotation

F
Hy

t NDIz Na o ND NAFIwJ



t i Yat Ng t Ng Na my Fitz

2ND Mg Fitz

A NDi1z mg FH

Use Nat N Mg
Nat tmg Fitz Mg

Na Iw Mgz Cmg Eft

A Na t mgtfH

a M 1000kg g 9.81 M s2 F 500N H I M W 2M

NA i Iz 9810 5002.1 98101 250 N

Ng Iz 9810 5o 9810 250 N

b F Noooo N

NA Lz 9810 10 12 9810 150000 N

ND 12 9810 50000 negative normal reaction

WHEELIE youtube Do a search



large TN Neo
A D

part bre d.co Okey N cannot be negative
ND can at best be 0

Ng to The object pivots about A
a

Gyp

F
ftp.T

aa

hi F manA

j i Na Mg Moray

Iq Isak
Fitz Na Iad

Unknowns i Aux Clay d NA

extra Tea is only aloreng i and has zero component
equation along J



da Ag thx Tak
T
omega

da aa i t away I die x f wzi Hzj
aa.it day j t f Luffy HEf'T

Ia i aaxtltf.lt I day E
AI only along t and not along I

set j component to zero
day Lutz

o

aay a

You can now solve for the 4 unknowns

aux Clay d and Na using these new

THE
www.easwillanka

exercise



 

A couple of transmission systems

Gears
Wz

Gear 2
w

tqf rj
Loi Il I

Ri

IT P and Pz are points on gears 1 andth
2 that contact each other

To O Foz O

O and Oz are fixed in space

whatistherelationbetweenwlandi
the gears do not slip against each other

No slip Jp Tpi

J
J

Tp R W I Jp Rewa j Ricky
TPI Toi t w k x Tpyo Vpz RzW

reason for
I I

Iq

sq op outwiiximo



5 WIex Rai
wzR tf

4Y away

k i

stand I L I

i
t.name

I
Say a motor at 0 was applying a moment

M Te at 0 where M Value is known

The gears are rigid bodies with moments

of inertia I and Iz respectively about 0

and Oz respectively

Detwnine the angular accelerations 6 and da

of the 2 gears

Gear 2 has no friction or any torque at Oz



FBIs of the gears ignom gravity
42

F

i yeah

1mg
Img

For gear 2Ee geart
Eino I dik

Ti
and have 3 unknowns 4 h F

Need a 3rdegn

From F Izdyra use in

Mit Igf Ri Iia

a a

I



Mi Iif m
I l 9

Mt 7 at duffy
o

Mi K Iz t I
y

da IaRi I
a
i

a a

I
i i e

I I

extra term

Ifk ded inertia of
gear2



 

Anotherkindoftran smission

Belt drive chain drive

I Ri µbdthof
belt chain is
inextensible and

t faith is

in tension and

pulley1 pulleys does NOT slip
uniform disk uniform disk against the pulleys
M R

mass m radius R2
Io MRI Iori Mik2 I

Part i say the pulley1 has angular velocity wi
what is the angular velocity of pulley 2
in terms of wi R and Rz

intima
c

wz

any point on belt between

R and P
P and Pu

are where the belt is tangent to the circles

No slip Itself TB Tp Tpa
d



Tpf Mw Fr Tp RzWzn

Raw RzWz

Ew Ryan wEWit

Part 2 Pulley 1 is acted upon by torque 4h
at center 0 No torque at axle 02

on pulley 2

Determine the angular accelerations of pulleys
1 and

2

I Th I

f I i th

I 1F
T F l Nk

l z

I tomagz

Imig

EMI Iad Te
EMI Iad I

Y TR TIR Io y KY
Tik TzRzkY IozqF

F TIR tTzR Io y CT T2 the Io da



E LT TYR Ioi 4

Unknoens di du Ti Tr 4 unknowns

4Ri

Unknowing A 42 g Q
where Q T Tz

4 QR Io 4
sink a

E tie
Q IOI

R

t g IOI

In III
t I

Rn

Io tE fHRz

II I



a LIE III 44 E'I

Ii MiRi t MiRi

a i
a a

e n



 

WorkenergymethodsiRigedbodies
Recall

T

KEI t PEI Work dont Kef t PEf
by other
forces

Et PET KE it il work

feet Kei Ct it
hEgfYfy

springs

STILL TRUE if we have rigid bodies
Can use these for the whole system

or just a single FBD

For a 2D rigid body translationalwir

i
F

Tal



PE due to
gravity mgya

w

vertical position
ofthe center
ofMIS

Work

gaff
ft dip ICE at

actingat
power

P

work of Judo J Mw dt
a moment t
M Mda Moto dt



 

Eixample
cirmw.ir IogbM Object rolls without

a slip
starts at rest

30 0 Determine the velocity of G
when G has traveled a distance

initial
9 r s s along the slope

y o haa f ol finalYa Is Jino g

KEI t PEI t work kept PEF
doneby
other forces 4W
not gravity v
or springs

KEI 0 rest KEF MUI t IT
PEI 0 datum Rolling without ship

k
PET mgYap Kef MVE t I tf
Pff mg f s Sino ke Vci Mt Ifp

Whatatont work by normal reaction or friction

W JE.JP dt P is point of application
of force



Both friction a normal reaction act at P

Tp o no slip
we 0

Using everything in

O t O t O tz mtI Va Mgs Sino

VI 2m

C IE
u Esi

Casi I Ia o particle no friction

Vu
mqs.sinofg.sinova.TN

gs.sicase2uniformdisk Ia MII

Va fFj aftXIII



p ftp.sina

Va fFg
Casio ring Ice MR

u

Va ffsino fgs.no

Vg Fg



 

Example i

Pulleyproblemwithenergymethodeno
slip between pulley rope

mm.iqDo
mwhEiI Yhgu Yj a ikrm

P

y

th f w rigid body Ia M 2

I'm I in Ii say the system starts at rest

Determine the angular velocity w

I 1 of the pulley when mass m
I R l R2le has descended by height H

use energy methods

KEI t PEI work by KEF t Pef
other
forces
not gravity
or springs

KEI 0 rest REF 12MVy t IzmikittzIgw
i

PEI 0 datum

In can we replace Ulf and Vzf in terms of W

yes V Vp R W

no slip Ton rigidbody pulley

Similarly Vai Vez Raw



KEF 12M R Wf t IzMs Rauf t IzMII wt

kEf Wf Em Rit Marit M
2

Work by other
forces

o

Pff M g Y f
t M29Yzf

m gCHI t mg Yzf

what is Yaf measured from its own initial

position

m goes done by It given

I E a

m goes UP by H Rip

Yzf H RI
Ri

PEF Might t Msg Htp

Plug in into



O t O t O m g l H mg High t I w fmRftmaR'tMII

w M gH MagHRYR

m R t maRi 1 M

w
E i



 

Impulse Momentum methods for rigid bodies TRUE
FOR SYSTE

Recall WITH
Impulse momentum theorem tf PARTICLES

Total linear Total linear RIGID

momentum
mo.ggtqm J F dtBoDIEg

final ETC
i ti

impuls of all
of the whole system external forces

on the system

impulse 0 and linear momentum is Consersed

when

CEE 5 no net forces

on 2 SE is finite eg gravity springs etc

tf ti so that the integral o

Linear gid body

mats Unearjumentum mira

Jin For multiple rigid bodies
total linear
momentum

Mita tMcTaz 1



For the purposes of linear momentum conservation

infinite forces
are forces of interaction in a collision
that happens over infinitesimal duration

tf ti

QE y
Ee E soo

as tf ti o

while the objects still
have their velocities change due to a collision

analogous interaction forces during
explosions in which the component

pieces experience a finite change in velocity
in infinitesimal time

00 TO A

Angularmomentamdanopolarimpulse
tf

to wiffen 14 at

abort o ti



Angular
momentum

ofabaontng.GE body

IG wk in 2B

fra
o

fur
P

Angular momentum
about a different

Painting.ee rigid

awh trax my

Contrast this with angular

fig
momentum for

fawning

a panacea
Typing

about point P
P

change in

angulmaromenum
animmphen



angular impulse o if

if A
p
external o

due to no forces on the object

forces all pass through P
central forces

net moment o due to
various moments canceling

EM finite but tf ti o

so that GM dt o

ti

F



 

Example collision angular momentum conservations

Say collision happens in infinitesimal time

1 Before the thin collision with P After collision

ft r collision pencil
r uniform the pencil

nor gi rotates about

fig 5J m s P pivot p

I J without slip
E

o fixed 4 gukwi pivot
P

Question Find w after the colliSion

Hotel pivot P is fixed and cannot move its mass

is not known effectively infinite as it can't be

moved

FED

Before collision During the collision

a

f Im'ouisiontora
infinity

Angular momentum of bar conserved about point P
because

the infinite fora ads through P and
has

no moment about P



ing has a finite moment about P but

when integrated over infinitesimal duration

S m dt o

Angular momentum angular momentum

of pencil before after collision
collision about P

about p

H H
Ip i k f

Afp Ia Wik t Jaypx Mirai

o k t E E x m 4j

mall 4 I min faffaggloaxis

METI I METHoD2_
Ttp
f
Ia w f I t Fapx Mrap Ipwite

thy wtte t i x M ywfµ
I wth Igt M 1
t t lapp

mfzwfietkf.my wt Imi fist't
mewf flat k



MILK m iwf ftp.t
zJkwf

tE

given GO.im T

wt o µ
radls



 
horizontal

E amt
uniform Initial velocity of mass

V Kot TM

a linear e ang
at Initial velocity of pendulum

O

mi
fam.µ hi irest

t
particle

Lh what is the angular velocity of the

pendulum

given that the collision is plastic or perfectly

inelItic E this means that after the collision

the mass in sticks to the pendulum and moves with

the pendulum

Solution
FBI during collision

of µ Big forces infinity

Fullision Fullision

1
0 FH R and thy reaction forces

could also be infinitymig
tmg because they prevent

0

ignore during collision from moving despite
as they are small

compared to collision the large collision forces

forces

I



Which point should we take angular momentum
Ht

conservation about

Itf Iti angular
impulse fsMdt

If we take It about a there would

be an angular impulse due to the BIG

reaction foras
Thx Ry which we do not

want

If we take It about point 0

for the whole syplem pendulum 1 mass

then 41 Rx Ky will have an effect because

they act at
0

21 Follision is an internal force of the
whole

system and does not appear in an FBI

tree of the whole system
whether There

dgkjaii.tl Itoi HI f

ng f fmug
because no large moments



about 0

note this applies only if we consider the system

and not the pendulum alone
O

a r

Inuvik F xmI Particle EI Ji vi

Hyo i ah
c I

IqwiktF xmIiJPendulum m v Tay II

O Ix m uit

t J t I

t myth
c

entirely
due toparticle

Iff particle t pendulum
E I

IoWf
R t Io Wf

Wf

File pendulum

g
parallel axis

1oz pendulum Iast Mr
1hm

Mj
1ME Mj

0

Io particle Iff t m
because Ia o

forparties
MILT4



Iof
Io t Io Wf k

M
2 Wf

K

t ftp.i
H

ofmyvkumngItMLylY wt

s.wt

imwweuc

elastic KE conserved

M will have a Uf unknown and

not be stuck to the pendulum

2 unknowns Wf pendulum

Vf Mass My

2 egm 1 angular momentum conserved abt o



2 KE conserved

Sold for Wf
Ufc



 

Example A rigid body pendulum uniform ban

of length L and mass Mc hangs from 0

as shown

If ftp
t

Another point mass particle m collides

with the pendulum exactly hitting Gonthe
pendulum It is plastic collision which

means that the 2 masses are stuck together
move together after the collision
Mi is traveling horizontally with speed v just before
the collision

Qi what is the angular velocity of the pendulum tm

just after the collision
Solution

pry
reaction forces

Darwinism Rx o or o
can also be infinite

obitµ I we ignore finite forcesto infinite y
big like gravity

interaction P

foras

Angular momentum of the WHOLE SYSTEM is
conserved across the collision about point o

I.fi mg
k
324147

Il



Ello
i Homi 9

t i of
m

F xm E t o
w t pendulum

velocity initially at rest
ofMi
before collision

EI x milit mix fix in
m K

Fai m

Hof T x m If t Iowf I

ofmass m
because pendulum rotates

Thf i Wf i
with center of rotation

o

Z

Io Igt Ma hz
M

2

tmz MIS

Use a in
t 64

of g x Chitzwti t M 2
WfTe

m I wfrktwfmz.IR L Mfatmz wt
E

4

yo i
I o f



M 4 KY H MitMag Wf
K

wt I KEEF
the whole

system



Why study vibrations?
- causes discomfort

- acts as an excitation for sound and noise,  
     can be "good" or "bad"

- results in large stresses and catastrophic failures

Wind induced vibrations

Search for: Tacoma narrows bridge, 

July-Nov 1940.

Vibrations
- a type of dynamic behavior in which the 

system oscillates about an equilibrium point



Resonance

Search for:  resonance, helicopter



Double pendulum

Search for: strogatz, double pendulum on youtube



An application from a few years ago.

Eavesdropping using video

Search for:  the visual microphone



Many degrees of freedom system

search for: ‘the resonant bridge’ on youtube

Messiah College, PA



 

MASS SPRING DAMPER SYSTEM

k mais m

NN
m spring stiffness k

damping coefficient c

iguanas spring rest length e
e force free length

3 stress free length
whstretched length

distance
measured

from
unstretched

spring
position

Daimler
velocity of point P same as

4 17 F F linear

F tcu drag

I Ei Lin Then E tack IDII

t

Eg dampers in door closing mechanisms



qN
Kx Kx MM a Kx

Ex G c'x
Cx

Img

Fx ma

Kx ex mi

Kx Ci mi because l lots
i i

Xiii
as lo constant

Equation of motion for a mass Spring damper

system
2nd order linear ordinary differential

equation

s



 

FREE VIBRATION WITH NO DAMPING µ
YYmPoYj

c

Massspringsysteme oscillator

Hm X is measured from the

rest length of spring
freelength stress free length etc

f N ma Kx

Dm m n mitk

Img
we would like to derive an expression for x t
that describes the free vibration of Mars m

We know that the motion will be an oscillation

which will persist for ever

Let us try Let A cos wt t B sin wt

A allows for different
frequencies

allows for different
amplitudes

x e AW sin wt t Bw cos t

I AW cos t Bw sincwt

big and in

ME t Kx o



M Auf cos H DW'sin wt x k Aws wt t Bsinwt

O

MW A cos wt t B sin wt t k LAcos wt t BrinWH o

mw't k A Wt o

k mW because Awsat t Bein wt o

wi

mm
ti

w f w is called the'angularfuguenaj

of oscillation
units S Hz tads

w increases with increasing k

W decreases with increasing m

wn f admits sina.in mmr



A and B are determined from knowledge

of initial condition

Say Xo is the initial value of X No

v Io is the initial value of x x co

X H A cos ut t Bsin wat

x o Xo

A cos 6 t Bristol Xo

A l 1 B o Xo

A

x o do

xG Aw sis t t Bw cos t

X o AW O f BW I BW Ko

Bw x

Be

Plug in egn

xkh x.asfwntltx.mu
wTT



simple harmonic motion

t

I l
a
Tn 2wI r

what does ft A cos at t 13 his wat look like

cos at ssin
ut7iIIVhf.eilifN f.eI l

T l l

2Ifwn
Tn

F zT Wn

Tn time period of IT Time period foroscillation of Wu one full cyclefree vibration
after which
everything repeats

natural period units seconds



f a Iq WIT natural frequency units Ig Hz

how many cycles per second

Wu natural angular frequency
cnet.im inmM

ack to xG A cos ut t B sin ut

Htt
AFtB.fAqpgcosnHtBzq.sinwntIfci
A.q T co

Bff
Cit CT A't B L

AFB AFB
14 312
A't B

Say 4 cos ol Ce s.info when 4 is

some angle

Xlt aft at cosof sin wat sing

Trig f
identity

cos 0 cos 02 t sin 0 sirs Oz cos o of



xltl
gf.ws

Wnt o

Ht is
amplitude

f phaseoffset
a sina.ee minting

i

it
I

I II
I where the peak

occurs



 

Exampley
Mass spring system with no damping

Given mass m 2 kgFLmii nx spring stiffeners k 4 Nlm

I 7 initial x o l m xLol 2 m s

Determine

1 natural frequency Wn of the system
angular frequency

2 the time period of free vibrations
3 Xlt given the above initial conditions

fam fi Fr Hz

2 time period of oscillation Tn Ewtn
2 lTfseo

3 Htt x cos ut t dog sin at

xttl
lcoslrztt zsmf.tl



X KI A cos rat t B sin Rt

No I

x o A Coho t B sin o A I

m

x o 2

xCt fr Asin Ft BE cos fat

x o 2 FLA o Bf l

Be 2 fr
F

B m

xltl 1cosf.EEt5usen fzt



 

txam.pe Verticaloscillationsofama.rs hangingdo

1 1 11 Mass m 2kg

ftp y Spring stiffness k 4 Mm

restfunstretched force free Im

length of Spring
lo

tg gravity g

a Natural frequency Wu of the system angular fry
b Natural frequency fu of the system
c Motion y t of the system given ylo 2M

and idol I m s

girly
b
when Ly e is storing

y I stretch from its

1mg
her stretched length

Fy May

mg kly.tomyT
miitkymgtkW



Can we convert this equation to the standard

form Fiikx

StaticEquilibrium value of y from
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Q4. Vibrations [12 points] 

  
Consider the system shown above, with a rigid body pulley of mass m2 = 1 kg and radius R = 0.2 
m. The mass m1 = 1 kg. The spring stiffness is k = 100 N/m. When the spring is unstretched, the 
position of the mass m1 is:  . 

a) Draw all relevant FBDs. 
b) Determine the differential "equations of motion" for this system in terms of the vertical 

position  of mass m1. 

c) What is the time period of undamped free vibration of this system if damping c = 0? (free 
vibration means external force ). 

d) If the external torque was given by  and there was no damping (c = 0), 
determine the response amplitude of oscillation in . Given: . 

e) If external torque , determine the free vibration motion  when the initial 
conditions are  and . 

Note: Don't worry -- if you get the equations of motion incorrect (but is plausible), but your later 
work on c, d, e follows correctly after that, you will get full points for those later parts! 

Hint: Feel free to use this video https://www.youtube.com/watch?v=1TMoyVH_VLA on your 
Carmen for inspiration (as well as your HW10 solutions,  Q3 including the most recently posted 
update on Apr 30, here: https://osu.instructure.com/courses/72915/files/21111088?
module_item_id=4094257 ). 
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