ME7752: Mechanics and Control of Robots Lecture I

Instructor: Manoj Srinivasan Office: E340 Scott Laboratory Email: <u>srinivasan.88@osu.edu</u>

(PDF posted. In the PDF, if there are no links to videos, do a google video search)

What movie(s) does this story remind you of?

"... a factory builds robots, meant to relieve humans of the drudgery of work.

The robots are built in great numbers and with increasing intelligence.

Soon, the robots are used as soldiers in wars.

Eventually, a robot revolt wipes out the human race!"

Story quoted from the book Robo sapiens (2000)

When was this story written?

"Rossum's Universal Robots" a czech play by Karel Čapek, 1920!

"... a factory builds robots, meant to relieve humans of the drudgery of work.

The robots are built in great numbers and with increasing intelligence. Soon, they come to be used as soldiers.

Eventually, a robot revolt wipes out the human race!"

Story quoted from the book Robo sapiens (2000)

First use of the word "robot"

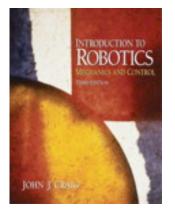
Robotics

- Kinematics (How to describe the possible motions of objects = geometry)
- Dynamics (How to compute motion of objects given forces on the objects)
- Control (How to move objects in a desired manner under different environments)
- Sensing (Forces, Position, etc) incl. Computer Vision ...
- Artificial Intelligence (Similar to control, but can involve more high-level stuff, like cognition and learning)
- Electronics, Micro-controllers, and Computers
- Actual building expertise, Mechanical Engineering, ...
- etc

This course ...

- Kinematics (How to describe the possible motions of objects = geometry)
- Dynamics (How to compute motion of objects given forces on the objects)
- Control (How to move objects in a desired manner under different environments)
- Sensing (Forces, Position, etc) incl. Computer Vision ...
- Artificial Intelligence (Similar to control, but can involve more high-level stuff, like cognition and learning)
- Electronics, Micro-controllers, and Computers
- Actual building expertise, Mechanical Engineering, ...
- etc

Student presentations ...?


- Kinematics (How to describe the possible motions of objects = geometry)
- Dynamics (How to compute motion of objects given forces on the objects)
- Control (How to move objects in a desired manner under different environments)
- Sensing (Forces, Position, etc) incl. Computer Vision ...
- Artificial Intelligence (Similar to control, but can involve more high-level stuff, like cognition and learning)
- Electronics, Micro-controllers, and Computers
- Actual building expertise, Mechanical Engineering, ...
- etc

Text chapters

Introduction to robotics: Mechanics and Control Third Edition, John J. Craig

- I. Introduction
- 2. Spatial descriptions and transformations
- 3. Manipulator kinematics
- 4. Inverse manipulator kinematics
- 5. Jacobians: velocities and static forces
- 6. Manipulator dynamics
- 7. Trajectory generation
- 8. Manipulator-mechanism design

Mechanics and Math

- 9. Linear control of manipulators
- 10. Nonlinear control of manipulators
- II. Force control of manipulators
 - Control theory
- 12. Robot programming languages and systems
- 13. Off-line programming systems

Computers

departments involved ...

Electrical Engineering

Mechanical Engineering

Computer Science

Mathematics?

Biology (biomimetic robots, etc)

Material Science (smart materials, etc) Let's consider an analogy

How do you pick up a piece of fruit?

How do you write on a piece of paper?

What parts of your body are involved?

Parts of the human body relevant to moving and manipulating its environment

Actuators Muscles

Sensors

Touch, Vision, Hearing, Force sensing, position sensing, etc (sensory neurons) Mechanisms Arms, legs, fingers, etc.

Computers Brain, spinal cord, nervous system

(energy systems, circulation, breathing, etc, etc)

Robot components

Actuators

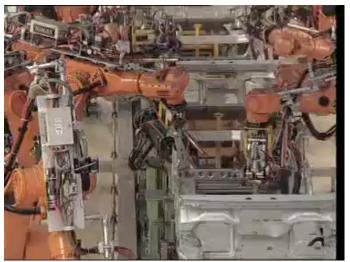
(Motors, pneumatic, hydraulic, smart materials, etc)

Sensors

(for force, angles, position, orientation, etc)

Mechanisms

(links, joints, gears, cam, etc)


Computers

(various micro-controllers, chips ...)

Some robot examples

Industrial robots

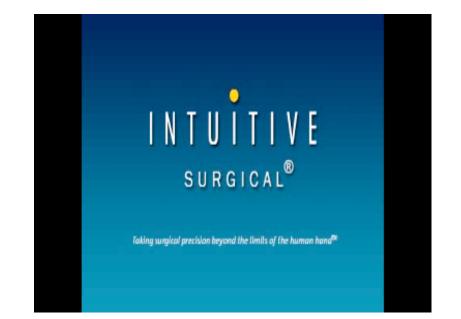
(for manufacturing, etc)

http://www.youtube.com/watch?v=v5eR0eHknZk

Adept Cobra i600

Kuka Industrial Robots Car assembly spot welding ... http://www.youtube.com/watch?v=1-J_EzKm_70

Fluid Research Corporation. Gantry robot for dome labeling


Adept

Technology, Inc.

SCARA robot.

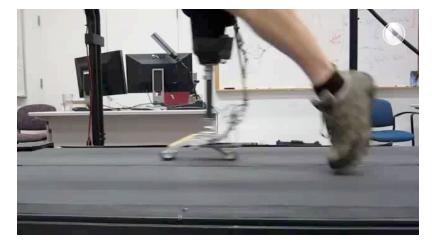
http://www.fluidresearch.com/movies/dome_label.wmv

Robot surgeon

da Vinci Surgical System Intuitive Surgical Inc.

http://www.intuitivesurgical.com/corporate/newsroom/videos/index.aspx

Robot semantics


Should the da Vinci surgical system be called a robot?

(How is it qualitatively different from a car?)

So we may be vague about what qualifies for a robot

Prosthetic devices

Prosthetic arms / legs ...

Steve Collins CMU Biomechatronics Lab

The MIT Insiderer

Sponsored by Technology Review Magazine

Hugh Herr MIT Biomechatronics Lab

http://biomech.media.mit.edu/index.html

Exoskeletons

Berkeley Bionics

Cleaning robots

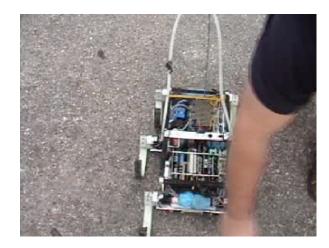
iRobot roomba demo

http://www.youtube.com/watch?v=LQ-jv8g1YVI

Miscellaneous legged robots

Cornell biped

http://ruina.tam.cornell.edu/research/topics/robots/


<u>Big Dog (by Boston Dynamics)</u> <u>http://www.youtube.com/watch?v=W1czBcnX1Ww</u>

Honda Asimo

<u>RHex</u> Upenn UMich McGill BD etc

http://www.youtube.com/watch?v=wluRVr8z WE

More recent developments

DARPA robotics challenge. VRC and the Atlas robots.

http://www.theroboticschallenge.org

Recent developments

- the President's National Robotics Initiative
 - a collaboration between NASA, National Institutes of Health, United States Department of Agriculture, Department of Defense.
 - to support research in new robotics research, especially aimed at creating robots that will work in concert with humans: "co-robots", "soft robots"

Recent developments

A revitalization of home-made robotics and do-it-yourself (DIY) projects

Make magazine

Other robotics clubs, etc.

Other applications ...

Self-driving cars Flying & swimming robots, etc

(We might do a robot video of the week)

Robot toys (incl. robot kits) Search and rescue, Military robots, etc ...

CBS - Late Show, David Letterman http://www.youtube.com/watch?v=9oUWCLBKK3E

The end