
ME8230 
Nonlinear Dynamics

Prof. Manoj Srinivasan
Mechanical and Aerospace Engineering

srinivasan.88@osu.edu

Lecture 1, part 1
Introduction, some basic math background, 

and some random examples

Spring mass damper system
LINEAR

mẍ + cẋ + kx = 0

mẍ + kx = 0 (undamped)

(damped)

Spring

Damper

Spring
Mass

Mass

(unforced)

( You can add “external forcing terms” to all the “unforced” examples in this lecture )



Spring mass damper system
NON-LINEAR

undamped

damped

Spring

Damper

Spring
Mass

Mass
mẍ + f(x) = 0

mẍ + g(ẋ) + f(x) = 0

mẍ + h(x, ẋ) = 0
more general

nonlinear damped 
mass-spring system

(unforced)

           f(x) = Nonlinear spring force
g(xdot) = Nonlinear damping

Nonlinear 
spring-mass examples

x(t)

x(t)

x(t)

Spring

Mass

mẍ + f(x) = 0

can be a nonlinear 
model of any of these 
systems on the right 
when the displacements 
are large enough ... (but 
mostly dominated by 
the first mode)

Displacements small enough implies Linear spring 
approximation would be good enough (usually).



Common
Nonlinear Stiffness behaviors

Linear spring

Linear 
spring

Softening 
spring

Softening 
spring

Hardening 
spring

Hardening 
spring

Displacement  x

Force f(x)

Different 
nonlinearities
might lead to 
different 
dynamical 
behaviors

f(x) = kx+ax3 ,  a>0, k>0

f(x) = kx-ax3
f(x) = kx

Ex1. which of the above cubic f(x) 
correspond to hardening and softening springs?
Ex2. Model mass hanging from a taut horizontal string.

Nonlinear damping 
examples

Fluid drag at large Re:

Coulomb friction:
“dry friction”

F = �cẋ|ẋ| = �c(ẋ)2sign(ẋ)

if ẋ = 0, �µsN  F  µsN

if ẋ 6= 0, F = �µdN sign(ẋ)

Drag
Damping
Friction

ẋ

F = 

Linear damping: F = �cẋ

(negative sign indicates 
drag opposes velocity)

Material damping at high enough strain rates is 
nonlinear



Many degrees of 
freedom systems

MẌ + CẊ + KX = 0

MẌ + H(X, Ẋ) = 0

K - stiffness matrix
M - mass matrix
C - damping matrix

Equations obtained 
from FEM, modal analysis, etc.

E.g., trusses/beam/plate/other 
elastic structures undergoing 
small deformations

Pretty general: most smooth 
nonlinear (discrete, unforced) 
mechanical systems have such 

equations

LINEAR

NON-LINEAR

X =

2
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Forced finite dimensional 
mechanical systems

pretty 
general

mechanical system

special case 
e.g., double pendulum

with joint torques



Other Examples

Simple pendulum

e

mass m

length lgravity g

A

O
ml2✓̈ + mgl sin ✓ = 0

✓̈ +
g

l
sin ✓ = 0

manojsrinivasan
Typewritten Text
Do you know what the solutionsto this equation looks like?Hint: Not sines and cosines in general.



Aeroelastic oscillations

Nonlinear (negative) 
damping

“Hopf bifurcation”

“Limit cycles”

NASA Tail Flutter Test

Tacoma Narrows Bridge Collapse

Motions of disks and 
cylinders

Equations of motion for a cylinder
rolling without slip

manojsrinivasan
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Paper by Srinivasan and RuinaSee demo, video and simulation.

manojsrinivasan
Typewritten Text
Youtube videos ofTacoma Narrows Bridge Collapseand NASA tail flutter test



Double pendulum

See also MATLAB
example

(Hamiltonian) Chaos
Sensitive dependence on initial

conditions
Lyapunov exponents

Double pendulum 
with 

torque actuators at each joint 
and PID control

See MATLAB example

“Robot arm”

manojsrinivasan
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(Double pendulum video: Strogatz)

manojsrinivasan
Typewritten Text
Animations of controlled robot arm(double/triple pendulum)



Robots and humans
Hybrid (piecewise smooth) systems

Non-smooth systems
Limit cycles

Stability, Linearized
Collisions

ODEs corresponding to 
mechanical systems tend to be 

(most naturally)
2nd order ODEs

Highest derivative order = 2

manojsrinivasan
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Videos:Passive dynamic robotsSpring-mass hopper



High (e.g., 2nd) order ODEs 
to first order ODEs

always possible
to convert

mẍ + kx = 0

x1 = x

x2 = ẋ

Say you are given 2nd order ODE:

Introduce new variables
for all derivatives of x, 
except the highest order (=2)

ẋ1 = x2

ẋ2 = �kx1/m

Write an ODE for each
of the new variables

Example

What is this course 
about?

Mostly, ordinary 
differential equations
of the form

dy

dt
= f(y, t)

y =

2

6666664

y1

y2

.

.

.
yn

3

7777775

t = independent variable

y = dependent variable

(can be scalar or vector)



What to do with PDEs?

Partial 
Differential 
Equations

Ordinary 
Differential 
Equations

Simplify, 
Discretize, 

Project

(e.g., finite elements, 
finite volume, 

finite differences, 
other Galerkin 

projections,
lumped parameter 
approximations)

Some of the ideas in the course actually carry over 
to PDEs without reducing them to ODEs, 

but we will not discuss such. 

Linear ODEs
dy

dt
= f(y, t)

dy

dt
= A(t)y

dy

dt
= A(t)y + B(t)

dy

dt
= Ay

Linear 
time-varying 

homogeneous
(variable coefficients)

Linear 
time-varying 

inhomogeneous
(non-homogeneous)

“variable coefficients”

Linear 
time-invariant
homogeneous

(constant coefficients)

Homogeneous 
means B(t)=0

Inhomogeneous means 
B(t) is not zero

A is a constant and 
not time-varying



dy

dt
= A(t)y

If y1(t) and y2(t) are solutions,

then y3 = y1(t) + y2(t) is also a solution.

dy1(t)
dt

= A(t)y1(t)

dy2(t)
dt

= A(t)y2(t)

d(y1(t) + y2(t))
dt

= A(t)y1(t) + A(t)y2(t)

= A(t) (y1(t) + y2(t))

Thus
y3(t)
dt

= A(t)y3(t)

add

Linear superposition for linear homogeneous ODE

dy

dt
= A(t)y(t) + B(t)

Linear superposition for 
linear inhomogeneous ODE 

B(t) - Input (the “inhomogeneous term”) 
y(t) - Output

Say y1(t) is a solution when B1(t) is the input.

Say y2(t) is a solution when B2(t) is the input.

ẏ1 = A(t)y1 + B1(t)
ẏ2 = A(t)y2 + B2(t)

ẏ1 + ẏ2 = A(t)(y1 + y2) + (B1(t) + B2(t))
add

y = �1y1 + �2y2 is a solution when B = �1B1 + �2B2.



Key properties of 
linear systems

• Superposition of solutions

• proportionality (input and output scale together).

• Various analytical and semi-analytical techniques 
available for periodic, non-periodic forcing. In the 
absence of forcing, “closed-form” solutions known. 
e.g., Laplace transforms, Fourier series, Green’s 
functions, modal analysis, etc.

Nonlinear systems have none of these nice
properties, in general. This course is about making
sense of nonlinear ODEs by other means.




