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(free and forced)
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Nonlinear spring-mass system
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Damped free vibrations of
Duffing equation

how would you expect the frequency to
change as the oscillation amplitude
decreases!?

Damped Duffing
with alpha>0
iffening spring

notice frequency change

guitar “pitch glide”
due to amplitude dependence
of frequency? (assume stiffening)
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https://www.youtube.com/watch?v=VkkOFLouQDs




Linear spring-mass-damper system

External forcing mx + C.C.C —|— kx = FO cos wt
Fy cos wt

Mass
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to
static force Fo)

Normalized
force amplitude = A =

Fo
(units of length) k

Frequency response of
linear spring-mass-damper system
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Duffing equation with forcing

Force f(x)
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External forcing spring

M
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mi + ci + kx +Hax®|= Fy cos wt

cubic nonlinearity G ll

Softening

Hardening or stiffening spring: a > 0

Softening spring: a < 0 [

Cubic nonlinearity with or without
quadratic nonlinearity

When we do Taylor series of an odd function about
an equilibrium for with spring force = 0

Dufﬁr.lg’s mi + ci + kx +Haxz®|= Fycos wt
equation

cubic

When we do Taylor series of odd function about  (Recall HW1 for
an equilibrium with spring force not = 0 illustrative example)

mi + ci + kx H ax®|+|Bz? |= Fy cos wt

cubic quadratic

(or) just Taylor series of a not-odd function




Frequency response of
Duffing equation
(cubic nonlinearity)

Primary resonance .
Big response amplitude when
forcing frequency W, ~ ‘linear’ natural frequency Wy

Secondary resonance

Super-harmonic resonance: Big response amplitude when
forcing frequency Wo ~ W/ integer (example: Wo ~ Wn/3)

Sub-harmonic resonance: Big response amplitude when
forcing frequency Wo ~ Wn x integer. (example: Wo ~ 3Wn)

Primary resonance and secondary resonances

Response amplitude/ forcing amplitude
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Multiple peaks due to nonlinearity !

even though it is a single DOF system

( Recall that an N DOF linear system (N>1) will have multiple peaks
due to there being N modes and corresponding natural frequencies)




Linear vs Hardening vs Softening

How the primary resonance’s frequency response change

Response amplitude (y axis) vs forcing frequency (x axis)
for 3 cases

Nayfeh and Mook

Dring

arrows indicate response
obtained in forward
and backward sweeps

forcing frequency  forcing frequency

Hardening vs Softening
Amplitude response by simulation

until steady state
see MATLAB program

Forward sweep (magenta) and Backward sweep (blue) shown
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Amplitude response obtained
by finding fixed points of Poincare maps

(so we can find both stable and unstable motions)
see MATLAB program

Frequency response Frequency response
for forced Duffing with . for forced Duffing with
hardening spring o . softening spring
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Ueda shows that the fully nonlinear forced Duffing
(linear stiffness = 0) has many parameter regimes with
many different behavior
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Five different co-existing periodic motions

For the same parameter values:k =0, A =0.2,c = 0.08, omega = |

Chaotic motion (unique)

For the same parameter values:k =0, A=10,c =0.1,omega = |

l‘ 1aotid




Co-existing periodic motion and chaotic motion

For the same parameter values:k =0, A=12.5,c¢ =0.1,omega = |
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Frequency content of response

Primary resonance (forcing w = 1)
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Fourier amplitude spectrum

Frequency content of response

Forcing freq w = 2
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Beware:

softening cubic nonlinearity
and purely quadratic nonlinearity

have regimes where the stiffness is ‘negative’ for some
large amplitudes => system can go to infinity if the forcing is
not small enough

Fix:

A quadratic nonlinearity could be accompanied by a stiffening
cubic nonlinearity which keeps the motion bounded

A softening cubic nonlinearity could be accompanied by a
stiffening x5 nonlinearity, which keeps the motion bounded




