
Basic phenomenology 	
of simple nonlinear vibration	

!

(free and forced)

Manoj Srinivasan (2016)
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Nonlinear spring-mass system
No damping

Frequency (time period) of 	
free vibration oscillations	

depends on oscillation amplitude
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softening cubic nonlinearity
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hardening cubic nonlinearity

unlike for linear spring-mass system
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guitar “pitch glide” 	
due to amplitude dependence	

of frequency? (assume stiffening)

how would you expect the frequency to 
change as the oscillation amplitude	

decreases?
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Damped Duffing	
with alpha>0	
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Damped free vibrations of 	
Duffing equation

https://www.youtube.com/watch?v=VkkOFLouQDs

notice frequency change
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( Static deflection	
 to 	

static force F0 )

External forcing

Normalized 	
force amplitude  =	
(units of length)

Linear spring-mass-damper system

Frequency response of	
linear spring-mass-damper system

figure source: Wikipedia
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cubic nonlinearity

Cubic nonlinearity with or without  
quadratic nonlinearity

cubic

When we do Taylor series of an odd function about 	
an equilibrium for with spring force = 0

When we do Taylor series of odd function about 	
an equilibrium with spring force not = 0 

quadratic

(Recall HW1 for	
illustrative example)

cubic

(or) just Taylor series of a not-odd function

Duffing’s	
equation



Frequency response of	
Duffing equation	

(cubic nonlinearity)

Primary resonance .  
Big response amplitude when 	
forcing frequency ωo ~ ‘linear’ natural frequency ωn

Super-harmonic resonance:   Big response amplitude when 	
         forcing frequency ωo ~ ωn / integer   (example:  ωo ~ ωn/3)	
!
Sub-harmonic resonance:   Big response amplitude when 	
	     forcing frequency ωo ~ ωn x integer.   (example:  ωo ~ 3ωn)	
!
!

Secondary resonance 

Primary resonance and secondary resonances 

Multiple peaks due to nonlinearity 	
even though it is a single DOF system

( Recall that an N DOF linear system (N>1) will have multiple peaks 	
due to there being N modes and corresponding natural frequencies)



Linear vs Hardening vs Softening
How the primary resonance’s frequency response changes

Linear	
system	
response

Hardening spring
Softening spring

forcing frequencyforcing frequency

Response amplitude (y axis) vs forcing frequency (x axis)	
for 3 cases

arrows indicate response 	
obtained in forward 	
and backward sweeps

Nayfeh and Mook

Hardening vs Softening	
Amplitude response by simulation 	

until steady state
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Steady response amplitude vs frq. with the points connected
cubic nonlinearity alpha = 0.5

forward frequency sweep
backward frequency sweep
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Steady response amplitude vs frq. with the points connected
cubic nonlinearity alpha = -4

forward frequency sweep
backward frequency sweep

Hardening Softening

Forward sweep (magenta) and Backward sweep (blue) shown

see MATLAB program



Frequency response 	
for forced Duffing with	

hardening spring
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Frequency response 	
for forced Duffing with	

softening spring

Amplitude response obtained 	
by finding fixed points of Poincare maps	

(so we can find both stable and unstable motions)

blue = stable periodic response	
red = unstable periodic response
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see MATLAB program

Ueda shows that the fully nonlinear forced Duffing	
(linear stiffness = 0) has many parameter regimes with 	

many different behavior

Damping	
coeff	

c

Forcing 	
amplitude A

See paper uploaded,	
Ueda 1991.

Following slides	
show some MATLAB	
illustrations of this 	

complexity
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Five different co-existing periodic motions
For the same parameter values: k = 0,  A = 0.2, c = 0.08, omega = 1
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Chaotic motion (unique)
For the same parameter values: k = 0,  A = 10, c = 0.1, omega = 1
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Co-existing periodic motion and chaotic motion
For the same parameter values: k = 0,  A = 12.5, c = 0.1, omega = 1

-10 -8 -6 -4 -2 0 2 4 6 8 10
x

-8

-6

-4

-2

0

2

4

6

8

xd
ot

periodic motion chaotic motion
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Frequency content of response

c = 0.1	
m = 1, k = 1	
epsilon = 0.4	
omega = 1	

A = 5

Even when the response	
has the same frequency as the 	

forcing, there can be other 	
harmonics in response due to	

nonlinearity	
(unlike linear systems)

Primary resonance (forcing ω = 1)
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Frequency content of response
Forcing freq ω = 2
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far from	
resonance	

we don’t see 	
much higher 	
harmonics in 	

response 
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Chaos = broad band frequency content 
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Ueda	
(Manoj	

notation)	
!

c = 0.08	
k = 0	

epsilon = 1; 	
omega = 1	
A = 0.2;	
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period 2 motion

period 3 motion
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Beware: 	
!
softening cubic nonlinearity	
and purely quadratic nonlinearity	
!
have regimes where the stiffness is ‘negative’ for some	
large amplitudes => system can go to infinity if the forcing is 	
not small enough	
!
Fix:	
!
A quadratic nonlinearity could be accompanied by a stiffening	
cubic nonlinearity which keeps the motion bounded	
!
A softening cubic nonlinearity could be accompanied by a 	
stiffening x^5 nonlinearity, which keeps the motion bounded	
!


