Perturbation theory

Example 1 (Bender \& Or zany).
Roots of a cubic polynomial.

$$
\begin{equation*}
x^{3}-4.001 x+0.002=0 \tag{1}
\end{equation*}
$$

Step la Introduce a small parameter ϵ.

$$
\begin{align*}
& 4.001=4+\epsilon \quad \text { where } \quad \epsilon=0.001 . \\
& 0.002=2 t .
\end{align*}
$$

\Rightarrow (1) becomes $x^{3}-(4+\epsilon) x+2 \epsilon=0$
Step tb. Make sure $\epsilon=0$ is easy to solve.

$$
\begin{aligned}
& x^{3}-4 x=0=x\left(x^{2}-4\right) \\
\Rightarrow & 3 \text { solutions } x^{*}=0,2,-2
\end{aligned}
$$

Step 2 Let us try to find the solutions when $\in \neq 0$ Say we wart to find the solution near $x^{*}=-2$. when $\epsilon=0$
Assume that when $\epsilon \neq 2, \quad x^{*}(\epsilon)=-2+a_{1} \epsilon+a_{2} \epsilon^{2}+\ldots$
a series expansion int

Substitute (3) in (2).

$$
\begin{equation*}
\left(-2+a_{1} \epsilon+a_{2} \epsilon^{2}\right)^{3}-(4 t \epsilon)\left(-2+a_{1} \epsilon+a_{2} \epsilon^{2}\right)+2 \epsilon=0 \tag{4}
\end{equation*}
$$

ignoring higher order terms

Let us expand (4) bur kep only terms wail $O\left(\epsilon^{2}\right)$ [we can use MATLAB'A symbolic toolbox]

$$
\left.\begin{array}{c}
-8+\left(-6 a_{1}^{2} \epsilon^{2}\right)+12 a_{1} \epsilon+12 a_{2} \epsilon^{2} \\
+2 \epsilon-4 a_{1} \epsilon-a_{1} \epsilon^{2}-4 a_{2} \epsilon^{2}+g \\
+2 \epsilon
\end{array}\right]=0
$$

Collect terms containing ϵ, ϵ^{2}, etc.

$$
\begin{aligned}
& \text { Collect terms containing } \\
& \epsilon\left[12 a_{1}+2-4 a_{1}+2\right]+\epsilon^{2}\left[-6 a_{1}^{2}+12 a_{2}-a_{1}-4 a_{2}\right]=0
\end{aligned}
$$

Because we want the solution to be valid for all small \in we set the individual confficients of pours of ϵ to zero.

$$
\begin{array}{r}
12 a_{1}-4 a_{1}+4=0 \\
8 a_{1}+4=0 \\
a_{1}=-1 / 2
\end{array}
$$

$$
\begin{aligned}
& -6 a_{1}^{2}+\left(2 a_{2}+a_{1}-4 a_{2}=0\right. \\
& \text { A } 8 a_{2}=6 a_{1}^{2}-a_{1}=6\left(-\frac{1}{2}\right)^{2}+\frac{1}{2} \\
& \Rightarrow a_{2}=1 / 8
\end{aligned}
$$

Thus, the "perturbation solution" is

$$
x^{*}=-2-\frac{1}{8}+\frac{1}{8} \epsilon^{2}+0 \cdot\left(\epsilon^{3}\right)
$$

This is the solution near the -2 root.
Using a similar procedures, we can show that the solution near the +2 rook

$$
\begin{aligned}
& \text { Solution near the th } \\
& \text { is } x^{*}=+2+0 \epsilon+0 \epsilon^{2}+0 \epsilon^{3}+\cdots
\end{aligned}
$$

ie., $x^{*}=2$ is an exact solution of the original equation for all \in !

- The solution near the 0 root is

$$
x^{*}=0+\frac{1}{2} \epsilon-\frac{1}{8} \epsilon^{2}+O\left(\epsilon^{3}\right)
$$

Remark: This is an example of "regular perturbation" in which the $\epsilon=0$ is well-defined and the $\epsilon \neq 0$ grow continuously our of the $\epsilon=0$ solution.
this is NOT the case, the
When problem is considered "Singular perturbation".

Duffing equation FREE VIBRATION

$$
\begin{equation*}
\ddot{x}+x+\epsilon x^{3}=0 \tag{1}
\end{equation*}
$$

cubic Aonlineanty.
(1) Regular perturbation expansion

$$
\begin{aligned}
& \text { patron expansion } \\
& \text { (will lead to "Secular" terms) - not very } \\
& \text { convenient. }
\end{aligned}
$$

(2) Lindstedt-poincare method.
(3) Method of multiple scales
(4) Averaging.
(1) Regular perturbation expansion

$$
\begin{align*}
& \text { guar perturbation } \tag{2}\\
& x(t)=x_{0}(t)+\epsilon x_{1}(t)+\epsilon^{2} x_{2}(t)+\cdots \tag{3}\\
& \ddot{x}=\ddot{x}_{0}(t)+\epsilon \ddot{x}_{1}+\epsilon^{2} \ddot{x}_{2}+\cdots
\end{align*}
$$

Substitute (2) * (3) in (1). ignore terms $O\left(\epsilon^{2}\right)$

$$
\begin{equation*}
\ddot{x}_{0}+\epsilon \ddot{x}_{1}+x_{0}+\epsilon x_{1}+\epsilon\left(x_{0}+\epsilon x_{1}\right)^{3}=0 \tag{4}
\end{equation*}
$$

Collect constant terms, ϵ terms, and ignore $O\left(\epsilon^{2}\right)$ terms

$$
\begin{array}{r}
{\left[\ddot{x}_{0}+x_{0}\right]+\epsilon\left[\ddot{x}_{1}+x_{1}+x_{0}^{3}\right] \neq 0\left(\epsilon^{2}\right)} \tag{5}\\
\equiv 0
\end{array}
$$

Ser conficients of powes of t to zero.

$$
\begin{gather*}
\ddot{x}_{0}+x_{0}=0 \tag{6}\\
\ddot{x}_{1}+x_{1}+x_{0}^{3}=0 \tag{7}
\end{gather*}
$$

Solving (6) is easy.

$$
x_{0}=A_{0} \cos \left(\omega_{1} t-\phi\right) \quad 8, \quad \omega=1
$$

Substitute in (7).

$$
\begin{aligned}
& \ddot{x}_{1}+x_{1}+A_{0}^{3} \cos ^{3}(\omega t-\phi)=0 \\
& \text { Recall } \cos ^{3} \theta= \\
& =\frac{\cos 3 \theta+3 \cos \theta}{4} \\
& \Rightarrow \ddot{x}_{1}+x_{1}+\frac{A_{0}}{4} \cos (3(\theta) t-\phi)+A_{0}^{3} \frac{3}{4} \cos (t-\phi)=0 \\
& \omega_{n}=1 \\
& \text { natural } \\
& \text { frequenas }>\text { veronance } \\
& \text { forcing frequency } \omega=1 \\
& \text { this ferm is colled } \\
& \text { a "Seculan term" } \\
& x_{1}(t)=\wedge \sqrt{A} \rightarrow t
\end{aligned}
$$

Using thin technique, we can show that all $X_{n}(t)$ for $n \geqslant 2$ give ∞ at $t \rightarrow \infty$.

Each turn in the series

$$
x=x_{0}+\epsilon x_{1}+\epsilon^{2} x_{2}+\cdots \text { goes to infinity. }
$$

We can show that the sum is finite at every t and as $t \rightarrow \infty$. (see Bender Orszag).

But this is cumbersome. There are other methods that do not product these infinities.
(2) Lindstedt - Poincare method

Circumvents the secrilor terms by introducing additional unknowns in the perturbation expansion and picking those unknown coefficients in a manner that the secular terms vanish

Same equation. Duffing with no damping.

$$
\begin{equation*}
\ddot{x}+x+\epsilon x^{3}=0 \tag{1}
\end{equation*}
$$

We are sexing fee vibration solutions. The solution

(We already know that the oscillation period changes with amplitude).

Introduce a new tims-like variable e

$$
\begin{equation*}
r=\omega t \tag{2}
\end{equation*}
$$

where $\omega=\omega_{0}+\epsilon \omega_{1}+\epsilon^{2} \omega_{2}+\cdots$ (3) with $\omega_{0}=1$
As we will see, this will allow us obtain a amplitude-frequancy relation.

Rewrite (1) using (2)

$$
\begin{aligned}
& \operatorname{sing}(2) \\
& \frac{d^{2} x}{d t^{2}}=\omega^{2} \frac{d^{2} x}{d r^{2}} \Rightarrow \omega^{2} \frac{d^{2} x}{d \tau^{2}}+x+\epsilon x^{3}=0
\end{aligned}
$$

Further, we assume that (as before)
$x=x_{0}+\epsilon x_{1}+\epsilon^{2} x_{2} \ldots$ all x^{\prime} 's being dependent
(5) on $\tau . x(\tau), x_{0}(\tau)$ etc.

Substitute (5) in (4), and keep only terms until $O(E)$.

$$
\left(w_{0}+w_{1} \epsilon\right)^{2}\left(\frac{d x_{0}^{2}}{d \tau^{2}}+\epsilon \frac{d^{2} x_{1}}{d r^{2}}\right)+\left(x_{0}+\epsilon x_{1}\right)+\epsilon\left(x_{0}+\epsilon x_{1}\right)^{\frac{2}{2}=0}+\quad+O\left(t^{2}\right)
$$

Expand and collect tumors of $\epsilon^{\circ}, \epsilon^{\prime}$, exc.

$$
O\left(\epsilon^{2}\right)
$$

\Rightarrow zero h order equation: $\frac{d^{2} x_{0}}{d r^{2}}+x_{0}=0$
firs x order equ: $\frac{d^{2} x_{1}}{d \tau^{2}}+x_{1}+2 \omega_{1} \frac{d^{2} x_{0}}{d \tau^{2}}+x_{0}^{3}=0$

Solere (5) $\Rightarrow x_{0}(\tau)=A \cos t$. (ignore the phase ϕ Substitute in (6). as we can choose $r=0$ without lars of generality with

$$
\frac{d^{2} x_{1}}{d \tau^{2}}+x_{1}=+2 A \omega_{1} \cos \tau-A^{3} \cos ^{3} \tau
$$

Using trigonometric identity for $\cos ^{3} \tau$, we have

$$
\begin{equation*}
\frac{d^{2} x_{1}}{d t^{2}}+x_{1}=\left(2 A \omega_{1}-\frac{3 A^{3}}{4}\right) \cos r-\frac{A^{3}}{4} \cos 3 t \tag{7}
\end{equation*}
$$

$$
\text { natural freq }=1 \quad \text { forcing frog }=1 \text {. }
$$

<resonance. "Secular term" .

BUT, given that we have introduced more untenown coefficients, wee can pick those $\left(W_{i}\right)$ to kill the secular terms.

Set $2 A \omega_{1}-\frac{3 A^{2}}{4}=0$

$$
\begin{equation*}
w_{1}=\frac{3 A^{2}}{8} \tag{8}
\end{equation*}
$$

$$
\Rightarrow
$$

$$
\begin{aligned}
& \omega=1+\epsilon \omega_{1}+O\left(\epsilon^{2}\right) \\
& \omega=1+\frac{3}{8} A^{2} \epsilon+O\left(\epsilon^{2}\right)
\end{aligned}
$$

using (8) in (7), wee ger

$$
\frac{d^{2} x_{1}}{d \tau^{2}}+x_{1}=-\frac{A^{3}}{4} \cos 3 \tau
$$

Solving $x_{1}(\tau)=\frac{A^{3}}{32}(\cos 3 \tau-\cos \tau)$

Thus, are have

$$
\begin{aligned}
& \text { ns, we have } \\
& x(t)=x_{0}(t)+\epsilon x_{1}(t) \\
& x(t)=A \cos \omega t+\frac{\epsilon A^{3}}{32}(\cos 3 \omega t-\cos \omega t)+O\left(t^{2}\right) \\
& \text { where } \omega=1+\frac{3 A^{2}}{8} t+O\left(t^{2}\right) \\
& \text { This is the SOLUTION the AMPLITUDE }
\end{aligned}
$$ DEPENDENCE of oscillation frequency

Notice that (9) has period $2 \pi / \omega$.
and (10) gives the amplitude dependence of the frequency or period.

- We can continue this procedure to whatever Eider of ϵ. (use symbolic toolbox).

