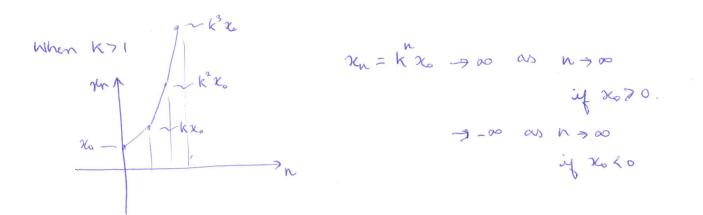
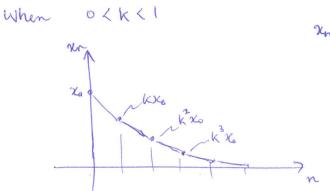
DISCRETE DYNAMICAL SYSTEMS

By "discrite" here, we mean "discrite time". (Discrite dynamical systems are interesting to study in their own right. But we introduce them here because they provide a formation for understanding landyring limit cycle stability, namely Poincaré maps)

Let us start with a simple example. Discrete Dynamical Systems are also called "maps". Take a piece of paper, tg. Say its thickness is to . Fold it once. It's thickness doubles. New thickness xy = 2 xo. Thickness after n folds = xn Say. Then, thickness after not folds = Xn+1 = 2Xn. xny = 2xn - 1 2en = 2 xo (if you could keep folding as h > m, 2/n >00 the piece of paper) The same equation applies to say bacteria dividing into two every time step ad infinition. (here sen is the population of bacterial culls often n divisions). This model assumes that bacteria do not die, of course. In any case, we might consider the more general equation $\chi_{n+i} = k \chi_n - 2$ Griven some xo, Xn = K xo -3

L





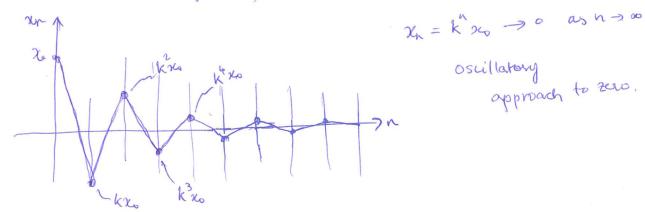
$$n = k^{n} x_{0} \rightarrow 0 \quad \text{as } n \rightarrow \infty$$

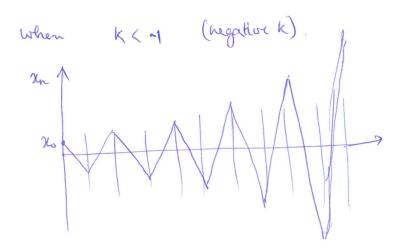
$$iy x_{0} x_{0}$$

$$\rightarrow 0 \quad \text{as } n \rightarrow \infty$$

$$iy x_{0} x_{0}$$

when -1 < K < 0 (negative K)





What if
$$x_0 = 0$$
?
 $x_h = 0$ for all n (for any k).
 $x_{h+1} = kx_h$ has only one fixed point $x^* = 0$.
[Fixed point found by setting $x_{h+1} = x_h = x^*$: so solving].
 $x^* = kx^*$ for x^* .

what if
$$|k| = 1$$
? (Boundary case)
 $k = 1 \implies x_{n+1} = x_n$. So $x_n = x_0$
Every $x_0 \in \mathbb{R}$ is a fixed point
and they are all neutrally stable.
 $k = -1 \implies x_{n+1} = -x_n$.
 $q = x_n$
 $q = x_n$

Linear discrite dynamical system ; m-dimensional can

Nonlinear discrete dynamical systems $X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ \vdots \\ x_n \end{pmatrix}$ Xiti = f(Xi). & some function Fixed points are found by solving the equation $X^* = f(X^*)$. $\leftarrow \quad \text{what does this equation mean?}$ $i_{i_{1}} x_{i_{1}} = x^*$, then $x_{i_{1}} = x^*$ for any i. For stability, we again find the Jacobian of f(x) with respect to X. at X*. This is an NXN matrix Find all the N eigenvalues (by solving, say, the characteristic equation det (J-AI) =0] - Sufficient condition for stability [[2j] <1 forall i. iey the absolute value of all the eigenvalues (real or complex) should be less than 1. - Sufficient condition for instability, one or more of the aj have lajl ? 1.

Jubilification for using the Jacobian is important in
determining the statistic of a fixed point
(Linarization over a fixed point)

$$X_{ini} = f(x_i) =$$
 some suptime.
Say X^* is a fixed point of the segution, such that $X^* = f(X^*)$
Taylor expand $f(X)$ about X^* .
Near $X = X^*$;
 $f(X) = f(X^*) + J(X^*) \cdot (X - X^*) + O(||X - X^*||^2)$.
 $Jacobian of$
 $f(X)$ evaluated - NXN methic
 $o_X X = X^*$.
 $Rear X = f(X^*) + J(X^*) \cdot (X_T X^*) + O(||X - X^*||^2)$.
 $\cong f(X^*) + J(X^*) \cdot (X_T X^*) + O(||X - X^*||^2)$.
 $\cong X^* + J(X^*) \cdot (X_T X^*) + O(||X - X^*||^2)$.
 $Rear X = J(X^*) \cdot (X_T - X^*)$.
 $Rear X = J(X^*) \cdot (X_T - X^*)$.
 $Rear X = J(X^*) \cdot (X_T - X^*)$.
 $Rear X = J(X^*) \cdot (X_T - X^*)$.
 $Rear X = J(X^*) \cdot (X_T - X^*)$.
 $Rear X = J(X^*) \cdot (X_T - X^*)$.
 $Rear X = J(X) \cdot (X_T - X^*)$.
 $Rear X = J(X) \cdot (X_T - X^*)$.
 $Rear X = J(X) \cdot (X_T - X^*)$.
 $Rear X = J(X) - (X_T - X^*)$.
 $Rear X = J(X) - (X_T - X^*)$.
 $Rear X = J(X) - (X_T - X^*)$.
 $Rear X = J(X) - (X_T - X^*)$.
 $Rear X = J(X) - (X_T - X^*)$.
 $Rear X = J(X) - (X_T - X^*)$.
 $Rear X = J(X) - (X_T - X^*)$.
 $Rear X = J(X) - (X_T - X^*)$.
 $Rear X = J(X) - (X_T - X^*)$.
 $Rear X = J(X) - (X_T - X^*)$.
 $Rear X = J(X) - (X_T - X^*)$.
 $Rear X = J(X) - (X_T - X^*)$.
 $Rear X = J(X) - (X_T - X^*)$.
 $Rear X = J(X) - (X_T - X^*)$.
 $Rear X = J(X) - (X_T - X^*)$.
 $Rear X = J(X) - (X_T - X^*)$.
 $Rear X = J(X) - (X_T - X^*)$.
 $Rear X = J(X) - (X_T - X^*)$.
 $Rear X = J(X) - (X_T - X^*)$.
 $Rear X = J(X) - (X_T - X^*)$.
 $Rear X = J(X) - (X_T - X^*)$.
 $Rear X = J(X) - (X_T - X^*)$.
 $Rear X = J(X) - (X_T - X^*)$.
 $Rear X = J(X) - (X_T - X^*)$.
 $Rear X = J(X) - (X_T - X^*)$.
 $Rear X = J(X) - (X_T - X^*)$.
 $Rear X = J(X) - (X_T - X^*)$.
 $Rear X = J(X) - (X_T - X^*)$.
 $Rear X = J(X) - (X_T - X^*)$.
 $Rear X = J(X) - (X_T - X^*)$.
 $Rear X = J(X) - (X_T - X^*)$.
 $Rear X = J(X) - (X_T - X^*)$.
 $Rear X = J(X) - (X_T - X^$

Where is some or all of the eigenvalues are on
the unit circle?
Consider
$$X_{i+1} = A X_i$$
 linear septim.
Example: $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ say. 20 septim $X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$.
Eigenvalues $A - \lambda I = \begin{bmatrix} -A & -1 \\ 1 & -A \end{bmatrix}$
 $dit(A - \lambda I) = A^2 + (= 0)$
The Aj looks have $(|\lambda_j|| = (A = \pm i)]$
 $A = \pm i$
 $dit(A - \lambda I) = A^2 + (= 0)$
The Aj looks have $(|\lambda_j|| = (A = \pm i)]$
 $A = \pm i$
 A

books like multiplication by A is a notation by 90°. (at keep
for this initial condition). I
Induct it is. Rotation by some single 6.:

$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \leftarrow \text{grand 2.B totation} \\ matrix.$$
Eigenvalues of this rotation matrix A have all eigenvalues inthe

$$[A_{1}|| = (. In paticular, He eigenvalues one
(A_{1}|| = (. In paticular, He eigenvalues one
(A_{2}|| = Ax_{i} = Eury X* in the plane in
 $\cos \theta + i \sin \theta$, $\cos \theta - i \sin \theta$. (Show this).
 \Rightarrow when $\theta = 0$, $A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ $X_{i+} = Ax_{i}$. Eury X[*] in the plane in
 \Rightarrow when $\theta = 180^{\circ}$, $A = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$. $X^{*} = 0$ is the only find point
but every other X. gas to -K.
 $and then comes back to X.$
 X_{0} , $X_{1} = -K_{0}$, $X_{2} = -(-K_{0}) = 4K_{0}$, $X_{3} = -K_{-}$, $X_{4} = X_{0}$, ...
 $= \frac{1}{2} \frac{(X_{0}, X_{2}, X_{0}, X_{0}, X_{0})}{(A^{2}X_{0} = X_{0})}$
Eury initial condition is a 2-cycle in the only FP.
Eury other geb through a 4-cycle. $A^{*} = 0$ is the only FP.
 $A^{*} = 0$ is the only FP.$$

$$\rightarrow$$
 when Θ is an exact fraction of 2π ,
Say $\Theta = \frac{2\pi}{9}$ where q is an integer $\neq 0$
then every initial condition $\neq 0$ is a q -cycle.
That is, $A^{q}X_{0} = X_{0}$.

> More generally, when
$$\theta$$
 is a rational multiple of 2π ,
say $\theta = 2\pi p$ where p is a rational number, p, q integers
 q
with p and q mutually prime (in they have no common division, to
P(q cannot be reduced further).
Then, after q_{1} iterations an X_{0} gave treamph a votation by
Then, after q_{2} iterations an X_{0} gave treamph a votation by
 $2\pi p$, an integer multiple of 2π , so is back at X_{0} .
 $A^{q} X_{0} = X_{0}$

ĩ.

> When O is an irrational multiple of 27,
is
$$O = 2\pi\mu$$
 where μ is an irrational number
(i.e., cannot be represented as P/q , with P/q integers.
 $(e_{e_{i}}, cannot be represented as P/q , with P/q integers.
 $e_{g} \cdot J2'$) then for $X_0 \neq 0$, X_i is never X_0
for any $i \geq 1$, is the net angle K_0 gets rotated by
never becomes an integer multiple of 2π .$

(0

- In any case, the more important point is that
in the linear system
$$\chi_{i+1} = A\chi_i$$
, eigenvalues with
 $\|\lambda_j\| = 1$ correspond to directions / subspaces which never
grow or decay asymptotically, but perhaps notates around in (as
in the examples so far).

Examples

(1)
$$\chi_{i+1} = \alpha \chi_i(1-\chi_i)$$
. Called the "Logistic map"
This is actually a very farmous equations
popularized by Robert May in an

$$f(x) = ax(1-x) = ax - ax^2 = a(x - x^2)$$

1(

$$Jacobian J = df = u f$$

$$J(x^{*}=0) = \alpha.$$

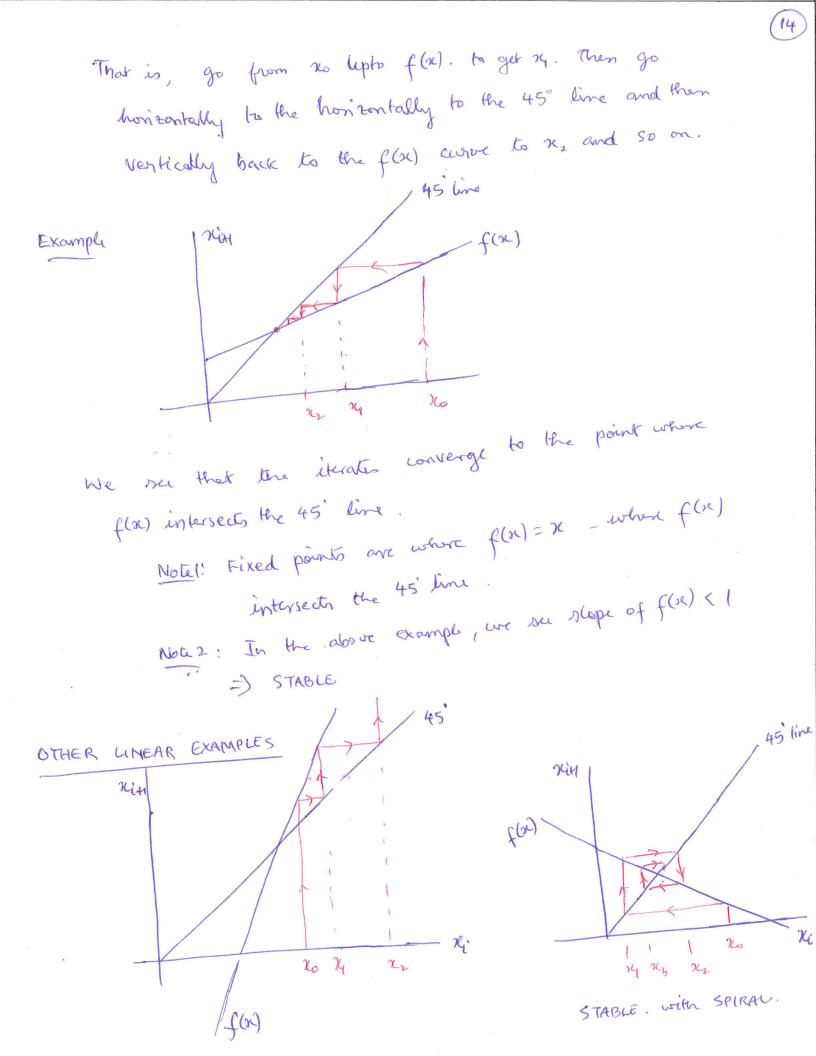
$$J(x^{*}=\frac{\alpha-1}{\alpha}) = \alpha \left[1 - \frac{2(\alpha-1)}{\alpha}\right]$$

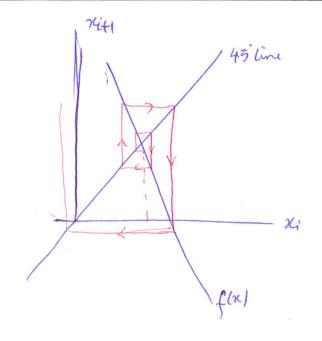
$$= \alpha \left[\frac{\alpha-2\alpha+2}{\alpha}\right] = 2-\alpha.$$

Fixed points $k^* = \alpha x^* (i - x^*)$. So $x^* = 0$ $(m) \quad i = \alpha (i - x^*)$. $i - x^* = i - i a$. $x^* = i - i a$. 2 Fixed points

$x^*=0$ locally asymptotically stable if $J=a$ = $1 \le a \le 1$ wastable if $[a] = 1$.	2
$x^* = \frac{a-1}{a} \qquad \qquad$	
bocally asymptotically stated if $2-\alpha < 1 + 2-\alpha > -1$ $-1 < 2-\alpha < 1 = 2-\alpha < 1$	
(or) 1 < a < 3 . unstable otherwise	
Exercise: Write a computer program to simulate this simple suptimes; $\chi_{iH} = a\chi_i(1-\chi_i)$. - Consider different cases of a . $a = 0.5, 1, 2, 3, 4, 5$. (for instance) - Consider different cases of a . $a = 0.5, 1, 2, 3, 4, 5$. (for instance) - Simulate the system for 2 or 3 initial conditions for each - Simulate the system for 2 or 3 initial conditions for each - Simulate the system for large enough 'a'r, the - You will notice that for large enough 'a'r, the - You will notice that for large enough 'a'r, the - trajectory (χ_i) look "chaotic" in a discornable pattern to superficially, there seems no discornable pattern to - superficially, appears non-periodic (to eye) and definitely - does not converge to a fixed point.	

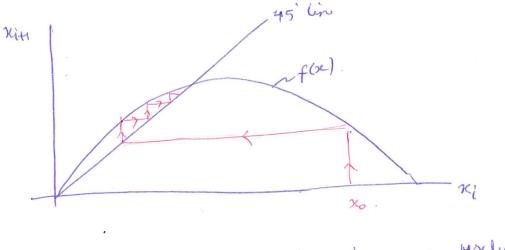
13 TECHNIQUE FOR FINDING ITERATES OF A GRAPHICAL ONE-DIMENSIONAL MAP (not turibly important in the context of this course) Easiest to convider an example. $\chi_{in} = f(\chi_i)$ Say floe) Looks like floe) For example $f(x) = \alpha x (1-x).$ K Find 24 from 26 from xy etc. N2 Find Xit A Xitl xz f(xo) = xi X2 xi x2 X Xo transfer sy to this axis for the next step. The above method requires transferring the iterates from the y-oa's to the x-axis, which can be accomplished by reflection about the 45° line. There is an eavier way to do all the iterates in the same figure. 145 line xi= xit1 xin X X2 X x ro





UNSTABLE and SPIRAL

f(s) has negative slope near fixed point.



In any case, these graphical techniques are baseful only in One-dimensional systems