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1. Introduction

Humans are capable of a wide range of gaits, from the com-
mon (e.g., walking and running) to the less common (e.g.,
hopping, skipping, sideways walking). During any of these
forms of locomotion, humans are able to walk stably, reject-
ing perturbations. Unfortunately, we still do not have a good
understanding of the human control structure that allows us
to perform at such a high level. Numerous papers have been
written hypothesizing a control structure and implementing
it (e.g., [1, 2, 3]) in simulation or on robots. While some
of these controllers work, they seem incapable of the same
performance as a human. Other papers have been written on
human walking experiments where subjects were perturbed
during the gait cycle and their responses were observed (e.g.,
[4]). These papers offer valuable insight into how humans re-
act and allow us to document general trends in behavior, but
they frequently do not give a full picture of how humans con-
trol their reactions.

Here, our goal is to demonstrate that metabolic energy opti-
mality can be used not only to predict qualitative trends in
steady-state human motion (e.g., [5, 6]), but also to predict
human reactions to perturbations during walking. We present
two simple models that can predict qualitative aspects of hu-
man walking during steady-state motion and calculate their
optimal trajectories back to this motion after a variety of per-
turbations. We then compare their responses to a data-driven
model of human walking and show that the energetically op-
timal trajectories back to steady-state for these simple models
is similar to the response from the data-driven model.

2. Methods

The central calculation is illustrated in Figure 1a. The peri-
odic walking motion for a bipedal model is first calculated
based on a minimization of a simple metabolic energy cost.
Then, for various perturbations off the optimal periodic mo-
tion, the optimal transient path back to the steady-state motion
is found.

Three-dimensional bipedal models. For this study, we use
two bipedal models to calculate optimal trajectories for walk-
ing. The first model, shown in Figure 1b, consists of a point-
mass upper body [6]. It is capable of moving the upper body
and foot anywhere in three dimensions. The massless stance
leg does work on the upper body by applying a force F . By
assuming the swing leg’s mass to be significantly less than
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Figure 1: a) A theoretical steady-state path (blue) with a transient
path returning to it (red) b) The point-mass model c) The
rigid body model.

that of the upper body, we neglect it in the equations of mo-
tion. The second model, shown in Figure 1c, consists of a
single rigid body instead of a point-mass. The same massless
legs attach to the body at different points, yielding a non-zero
hip width. They can produce a moment about the hip as well
as force F . The models are the same except for these differ-
ences.

Cost function to be minimized. We use a simplified
metabolic cost model. This model has three terms: a work-
based stance cost, a swing cost, and a resting cost.

Numerical optimization. Using numerical optimization, we
solve for the initial conditions, foot position on the ground
plane, and leg forces (and hip moments when relevant) as a
function of time that yield a walking motion that meets the
desired constraints and minimizes the metabolic cost model.
We use the nonlinear-optimizer SNOPT to solve all optimiza-
tions [7]. This solver enforces equality constraints demanding
continuity of body state between adjacent steps, bounds on leg
forces, hip moments, and leg length. In order to find the op-
timal response to a perturbation, we performed two different
types of optimization. The first optimization found the the
optimal periodic motion, enforcing periodicity of state vari-
ables over N = 3 steps. The second optimization calculated
the optimal transient back to the periodic motion from a given



perturbed state, enforcing that after N = 3 steps, the state vari-
ables were exactly the same as in the periodic motion.

Data-derived model of human walking. To compare our op-
timal perturbation responses, we use a data-derived model of
human walking dynamics. These are linear models for devi-
ations from the mean walking motion. We derive these linear
models from normal human walking, which is nearly, but not
exactly, periodic; we exploit this aperiodicity, assuming this
arises from various noise. From such noise-driven motions,
we determine the linear mapping that uses state deviations
from the mean periodic motion at one phase of the periodic
walking motion to predict state deviations at another phase of
the periodic walking motion, as in [8].

3. Results

We compared various aspects of transients back to steady-
state including, for instance, the trajectory of the center of
mass and the position of the foot placements. Here, we just
discuss the foot position dynamics comparisons. Figure 2
compares the foot positions for sideways velocity and posi-
tion perturbations of the center of mass obtained from both
optimization and the data-derived linear model. As has been
shown in human perturbation experiments, subjects tend to
adjust their stance foot in the direction of the perturbation,
especially for sideways perturbations [8]. In other words, if
someone is pushed to the left during a right stance phase, she
will move her next stance foot to the left. This feature is pre-
dicted by both models for perturbations in the opposite di-
rection of the stance foot, as is shown in Figures 2a and c.
The point-mass model predicts a symmetric response to pos-
itive and negative perturbations, as one would expect due to
the inherent symmetry of the model. The rigid body model
does not, which is also expected due to the asymmetry be-
tween the model being perturbed one way versus the other.
The data-driven model shows symmetry similar to that of the
point-mass model; this is due to the assumption of linearity.
Both models predict a symmetric shortening of the step for
sideways perturbations, as shown in Figures 2b and d. That
is, for a sideways velocity or position perturbation, both mod-
els move their next stance foot slightly backward, effectively
taking a shorter step.

4. Discussion

Superficially, energy-optimal feedback control might seem
implausible, as perhaps the energy it takes to reject small, in-
cessant perturbations during normal walking is a small frac-
tion of the normal walking energy cost. However, we find at
least qualitative similarities between such optimal responses
and human walking dynamics, as derived from intrinsic gait
variability. In future work, we will compare such optimal re-
sponses back to steady-state with actual perturbation exper-
iments, rather than just linear models derived from intrinsic
gait variability. Further, we will examine optimal transients
for higher DOF bipedal models so as to compare with both
point-mass models and experimental data.
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Figure 2: Optimal and data-derived foot-placement responses
to sideways position and velocity perturbations. The
plots show the changes in the fore-aft and side-to-side
position for the second step stance foot. A positive per-
turbation is away from the stance foot and a negative per-
turbation is towards the stance foot.
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