
Foothold Selection Using Direct State-to-Action Mapping
Jemin Hwangbo, Marco Hutter, Christian Gehring, Dario Bellicoso, Peter Fankhauser and Roland Siegwart

Autonomous Systems Lab, ETHZ, Switzerland
jhwangbo@ethz.ch

1 Introduction

We introduce a method of constructing a foothold selection
policy for a high Degrees-Of-Freedom legged robot by build-
ing a direct state-to-action mapping. Our method starts with
optimizing multiple trajectories with different velocity com-
mands and initial configurations. By collecting the optimized
trajectories, we get rich data about the underlying optimal pol-
icy function. Using Optimally Pruned Extreme Learning Ma-
chine (OP-ELM) [1], we find a compact regression form of
the data which can be stored in a small memory size and eval-
uated in a short time.

2 Problem Definition

We are interested in building a foodhold selection policy for
a quadruped robot StarlETH [2]. StarlETH is about 25 kg in
weight and 50 cm in height. The desired policy should out-
put an optimal foothold location for a given human command
considering the full state of the robot. Such policy can be
written as π∗ : x→ a∗, where x is the state and a is the corre-
sponding action. Our state can be written as x = [xint ,xcom]

T ,
where xint is the state of the robot and xcom is the state of the
human command.

The human operator sends a velocity command xcom = [vx,ωz]
which is composed of the desired heading velocity and the
desired turning rate. To make the system simple, we use only
a single policy that can handle different velocity commands.
This policy should output the desired foothold location in or-
der to follow the command from the human. In this way, the
controller can also work with a high level planner which plans
the global path of the robot.

The gait chosen for this task is walking trot. The gait pattern
generator defines the contact/lift-off timing and virtual model
controller [4] stabilizes the torso.

3 Optimization of Individual Trajectories

We use the optimization framework used in [3]. The frame-
work is rollout-based and requires many forward simulations
of the dynamics. Currently it is running on four cores of an
Intel i7-3740QM and the total optimization time for this work
is 3 days.

We generate initial conditions by disturbing the robot with
impulses. We apply −20 < Ix < 20 kgm/s and 0 < Iy < 15
kgm/s randomly where x is the heading axis and y is the lateral

−1 −0.5 0 0.5 1
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Torso Velocityy
(m/s)

F
oo

th
ol

d
 p

o
si

ti
o
n

y
(m

)

wz=0.5

wz=0.25

wz=0.0

wz=-0.25

wz=-0.5

IP

Optimized state-action pair

ELM based policy

IP based policy

(in rad/s)

Figure 1: Data obtained from single trajectory optimization
projected on 2D plane formed by y-axis of the torso veloc-
ity and y-axis of the foothold position is plotted (blue dots).
Inverted pendulum based foothold position is plotted in dark
green dotted line. In the case of our optimized policy, we vary
both yaw rate and lateral velocity and plotted the output with
solid lines with different colors.

axis. We also vary the command as 0 < vx < 0.6 m/s and
0 < ω < 0.2 rad/s. For each cases we can find an optimal
trajectory respect to a certain cost function. We use a cost
function that penalizes energy consumption, instability and
degree of violation from the human command.

4 Building a Policy with Optimized Footholds

Since the robot is symmetric about both the sagittal and the
coronal plane, we only build one model and use it for all four
feet. This ensures that we minimize the training time and
obtain a more compact policy representation.

We optimize a total of 880 trajectories and extract about
60,000 state-to-action pairs. These pairs are subset of the un-
derlying optimal policy function which we want to approxi-
mate efficiently and accurately. We regress the data using OP-
ELM. OP-ELM builds a Single-hidden Layer Feedforward
neural Network (SLFN) and reduces the number of hidden
layers nodes by removing less efficient ones. This ensures
that we have a compact representation of the policy. Raw

Figure 2: The final foothold controller responds to the disturbance by 4 kg ball thrown at 6 m/s in ODE environment. vx = 0.6
m/s and ωz = 0.25 rad/s is commanded by the human operator.

−20 0 20
0

5

10

−20 0 20
0

5

10

Impulsex (kgm/s)

Im
p

u
ls

e
y

(k
g

m
/s

)

Robot fall Robot Stable

Figure 3: The robot is disturbed at 1,000 different impulse
cases with both IP-based controller (left) and optimized con-
troller (right) with the failure rate of 29.3% and 19.1% respec-
tively.

data, inverted pendulum policy and sections of our optimized
policy are plotted in Fig. 1. The policy is 600 kb in size in
XML format and takes 60 µs to compute.

5 Results

We test our control policy with controlled impulse cases.
While commanding constant velocity of vx = 0.3 m/s and
ωz = 0.0 rad/s, we apply randomly sampled impulses to the
robot as shown in Fig. 3. Our optimized policy failed 19.1%
of the time whereas the inverted pendulum policy failed
29.3% of the time. We also test our policy using free running
environment with varying velocity command. A snapshot of
the simulation is shown in Fig. 2 and the related video can be
found at: http://youtu.be/9h17wxgaIlM

6 Conclusion

The proposed approach generates a higher performance pol-
icy compared to simple-model-based approaches and is more
computationally efficient than optimizing a trajectory at every
control update. Our computation of optimizing trajectories
can be carried on a powerful workstation or even on a super-
computer since we do not need to compute it on the real robot.
For more complicated systems, it can be used to generate an
initial guess for some trajectory optimizers. We plan to build
a hierarchical structure of optimized policies such that robot
can perform a free-gait where the robot decides when to lift a
foot depending on the command and its current state.

References
[1] Y. Miche, A. Sorjamaa, P. Bas, O. Simula, C. Jutten,
and A. Lendasse, Op-elm: optimally pruned extreme learning
machine, Neural Networks, IEEE Transactions on, vol. 21,
no. 1, pp. 158162, 2010.

[2] M. Hutter, C. Gehring, M. Bloesch, M. Hoepflinger,
C. D. Remy, and R. Siegwart, “Starleth: A compliant
quadrupedal robot for fast, efficient, and versatile loco-
motion,“ in Int. Conf. on Climbing and Walking Robots
(CLAWAR), 2012.

[3] C. Gehring, S. Coros, M. Hutter, M. Bloesch, P.
Fankhauser, M. A. Hoepflinger, and R. Siegwart, “Towards
automatic discovery of agile gaits for quadrupedal robots“ in
International Conference on Robotics and Automation. IEEE,
2014, pp. 42434248.

[4] J. Pratt, C.-M. Chew, A. Torres, P. Dilworth, and G.
Pratt, Virtual model control: An intuitive approach for bipedal
locomotion, The International Journal of Robotics Research,
vol. 20, no. 2, pp. 129143, 2001.

