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1 Introduction

A major problem in exoskeleton design is the unnatural move-
ment that comes from a poor human machine interface. Inno-
vative controller designs are a primary focus in making the
interface between man and machine more fluid and intuitive.
One controls approach is to detect the user’s intent to move
and then command the exoskeleton’s actuators to act appro-
priately. These types of controllers rely on intrinsic mechan-
ical measurements such as angles, forces/torques, or accel-
erations to sense the user’s intent. Once the controller has
detected intent, it then commands actuators to move in par-
allel with the user to assist them through predefined motions
[1]. These control schemes commonly lag behind the user be-
cause the intrinsic mechanical measurements are only sensed
once the user has already begun movement [2]. Additionally,
many of these controllers are constraining the user to move
in a particular predefined manner, one that may not be to the
user’s preference.

An alternative controls approach is to use the neural signals
from the wearer directly as control inputs to the exoskeleton.
We can record the neural signals sent to the wearer’s muscles
using electrodes placed on the skin’s surface. Our research
group has used electromyography (EMG) from the wearer to
directly control actuation timing and amplitude of multiple
walking exoskeletons. These controllers create a control sig-
nal by multiplying the EMG linear envelope by a constant
mapping gain. This proportional myoelectric control scheme
has resulted in significant reductions in the wearer’s metabolic
cost when implemented on a simple ankle exoskeleton using
the wearer’s soleus muscle as the control input [3]. However,
the constant mapping gain of this control scheme could be a
limiting factor of the controller.

With past ankle exoskeletons our group has hand tuned a cal-
ibration mapping gain so that the control signals barely sat-
urated during unpowered walking. This calibration mapping
gain was then doubled for powered walking to encourage a
reduction in the wearer’s own muscle recruitment [4]. A cou-
ple assumptions are taking place when this constant mapping
gain is imposed. First is that the researcher is assuming that
all subjects can reduce their peak soleus electromyography by
half. By doubling the calibration mapping gain, the wearer
must halve their peak muscle recruitment to achieve the full
control range of the exoskeleton. The second is that 50% peak
muscle recruitment may not be the subjects preferred way to
walk with the exoskeleton. The doubled calibration mapping
gain could be considered a constraint on the user. This con-
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Figure 1: Our proportional myoelectric control algorithm dynami-
cally adjusts the mapping gain as the user adapts to the device. The
controller performs a max search on each stride which is added to a
moving average of the previous strides. The dynamic gain is calcu-
lated using this average and a user defined maximum mapping volt-
age. The calculated dynamic gain is then multiplied by the linear
envelope prior to being sent to the actuators.

straint conforms subjects to walk in a manner that has been
predefined by the researcher as the “best” way to walk with
the device.

In this study we have created an adaptive proportional my-
oelectric controller in order to give the wearer full control
range regardless of their muscle recruitment. We hypothe-
sized that the adaptable controller will reduce the metabolic
cost of walking.

2 Approach

We designed and built a simple one degree of freedom ankle
exoskeleton (2.09 kg) for this study. This exoskeleton assisted
with plantar flexion and was powered by artificial pneumatic
muscles. The exoskeleton was controlled by an off board real-
time processor.

2.1 Controller Design
We used the processed soleus EMG to proportionally com-
mand control inputs to the exoskeleton actuators. Our con-
troller first processed the raw EMG to get the signal’s lin-
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Figure 2: (A) Subjects walked in the exoskeleton continuously for
a total of 50 minutes; 10 minutes unpowered (passive), 30 minutes
powered (active), and then 10 minutes unpowered. Each measure-
ment was an average of metabolics over a three minute time span.
A reduction occurs across training days when comparing unpow-
ered to powered conditions. The final session resulted in an average
metabolic cost of 3.01 ± 0.08 W kg-1 (s.e.m.) during the last three
minutes of the active walking. (B) When considering the EMG from
the end of the active condition across training days we see an in-
crease in soleus activity and a decrease in rectus femoris activity.

ear envelope. Then the controller conducted a real-time max
search of the linear envelope on a stride by stride basis. Once
the maximum of a stride was found it was added to a mov-
ing average of the previous fifty strides. Our controller then
calculated the mapping gain necessary for this moving aver-
age maximum solues activity to map to a user defined desired
maximum actuator voltage. This desired maximum actuator
voltage remained constant across all subjects and testing days.

2.2 Experimental Design
We tested eight subjects (male, 21 ± 1 years, 74.0 ± 2.7 kg,
180.0 ± 2.8 cm; means ± s.e.m.) during treadmill walking
at 1.2 m s-1. All subjects walked in the device continuously
for 50 minutes on three separate training days. Each train-
ing day was identical and consisted of 10 minutes of unpow-
ered (passive) walking, 30 minutes of powered (active) walk-
ing, followed by 10 minutes of unpowered walking. We col-
lected electromyography, metabolic, kinematic, and kinetic
data across all sessions.

3 Results

We found that by the end of the third session, our adaptive
controller was choosing gains that were a 1.50 ± 0.14 (mean
± s.e.m.) scaling of the would be calibration mapping gain.
Previous studies used a constant scaling factor of 2.0.

We found a significant reduction in metabolic cost on all train-
ing days (P<0.05, repeated ANOVA analysis) when compar-
ing passive to active walking with the exoskeleton. There
was an average metabolic reduction of 0.65 ± 0.13 W kg-1

or 16.9 ± 2.8% (mean ± s.e.m.) by the third training day.
Our metabolic results are similar to those found in previous
studies where a constant mapping gain was used [4].

Interestingly, the root mean square (r.m.s.) of the soleus EMG
increased across the end of each training session. This contra-
dicts the findings of Sawicki et al. where a constant mapping
gain was used [4]. We believe this discrepancy comes from
the fact that subjects are not constrained to walk in a specific
way when using our adaptive controller.

This increase in the r.m.s. of soleus EMG was coupled with
a decrease in the r.m.s. of rectus femoris EMG. This suggests
subjects found it energetically economical to increase effort at
the ankle in exchange for decreased effort at the hip. Findings
from Lewis et al. show that there is a trade off between ankle
and hip dynamics during walking [5]. Our results suggest this
trade off may come with energetic benefits.

Beyond demonstrating the benefits of an adaptive EMG con-
trolled exoskeleton, our findings open an interesting discus-
sion as to what is the best way of providing assistance to
the human gait. Our data suggests that subjects voluntarily
increased effort at the ankle in order to reduce effort at the
hip. Similar strategies (as opposed to replicating ‘normal joint
action) might prove beneficial for intrinsically controlled ex-
oskeletons or active prostheses.
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