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I. INTRODUCTION

Many biological and engineering systems exhibit periodic
behavior. Examples include circadian rhythms, electronic cir-
cuits, and heartbeats [1]. A particularly interesting example
is that of legged locomotion [2]. In many of these cases, the
periodic behavior is stable, and so many of these phenomena
are well-approximated by nonlinear oscillator models — i.e.
smooth dynamical systems having an asymptotically stable
limit cycle, or isolated periodic solution.

In an experimental setting, data is often obtained for a
system without a priori knowledge of the equations of motion
which describe it. If a physical system is well approximated by
an oscillator model, one can attempt to deduce the structure of
the underlying oscillator model from experimental data from
the physical system [3, 4].

In particular, it is often desirable to describe the location and
shape of the limit cycle itself. In the biomechanics community,
a common practice to estimate the limit cycle representing
the “typical stride” of a locomoting animal can be effectively
described as follows. First, given time series measurements
of an animal’s state, data corresponding to distinct strides is
partitioned into distinct segments. Next, since the speed of
the animal may not be uniform, all of the strides are scaled
linearly so that they the same length. This may be thought
of as “normalizing time” for each stride. Finally, states corre-
sponding to the same normalized times from distinct strides
are averaged. The average corresponding to each normalized
time is then assumed to approximate a point on the limit cycle
[5].

However, if oscillators are subjected to perturbations, there
will be substantial drift in the phase of the oscillator [6],
leading to uncertainty in the estimation approach described
above. In this talk, we will discuss an alternative method
of estimating a limit cycle from time-series measurements
based on the notion of asymptotic phase from dynamical
systems theory. Under certain conditions, we provide a bound
on the maximum error that our algorithm can produce and
prove that, under additional hypotheses, our method provides
results superior to the technique described above. Examples
will be given from both legged locomotion data sets and
simulated oscillator models comparing the performance of
these algorithms.
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II. ASYMPTOTIC PHASE-BASED ESTIMATE

In order to capture the notion of stability, we consider limit
cycles which are orbitally asymptotically stable; that is, initial
conditions in some neighborhood of the limit cycle’s path
asymptotically approach the cycle [7, 8]. If a dynamical system
has a single limit cycle that is both orbitally asymptotically
stable and normally hyperbolic, we will collectively refer to
the stability basin of the limit cycle and the dynamics within
as an oscillator [3].

Consider the nonlinear oscillator defined by the equation

&= f(x) (D

where f : B%" C R" — R" is a C? vector field with a single
normally hyperbolic, asymptotically stable limit cycle I'. Let
¢+(-) be the flow generated by (1). Two points z,y € B are
said to have the same asymprotic phase if

Jim [94(x) — 6u(y)]| = 0

The function ¢ : B — S that assigns to each point in B its
asymptotic phase is then a C? function of state [1, 9].

Consider the more realistic situation in which (1) is sub-
jected to stochastic perturbations. For simplicity, we consider
the case in which the perturbation b(¢) is uniformly bounded
and is such that a solution to the following ordinary differential
equation exists.

&= fx)+0-b(1) )

Here sup,cg ||b(t)||2 =1 and 6 > 0. Let y(t) be the periodic
solution of (1) with initial condition v(0) = ¢, so that y(R) =
I", and suppose that v has period 7.

Let X (t;20) be a solution of (2). We define the classical
estimate ¢; of y(t) to be X (t; xo).

Let £ := inf{t € [0,T) : (X (t;20) = t}. We define the
phase estimate p; of +(t) to be X (t; ()

III. KEY RESULTS

Proposition 1: Let f, b, o be as described above. Then there
exist constants L, D > 0 and a neighborhood U of the limit
cycle such that V& < D, for all zy € U and for all ¢ € [0,T) :
var[p;] < L§?

Proposition 2: Let f b, be as described above. Then



there exist constants L, K, D > 0 and a neighborhood U of
the limit cycle such that V§ < D, for all g € U and for all
t € [0,T) such that

/0 /0 Vgo(z(s))E[b(s)b(T)T]ch(z(T))TdsdT > K
holds, var[X (t;x¢)] > Ld&>.

Corollary 1: For ¢ as in the above proposition, the
phase estimate of +(¢) has smaller variance than the classical
estimate.
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