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Abstract— Measuring the stability of highly-dynamic bipedal
locomotion is a challenging but essential task for more capable
human-like walking. By discretizing the walking dynamics, we
treat the system as a Markov chain, which lends itself to an easy
quantification of failure rates by the expected number of steps
before falling. This meaningful and intuitive metric is then used
for optimizing and benchmarking given controllers. While this
method is applicable to any controller scheme, we illustrate
the results with two case demonstrations. One scheme is the
now-familiar hybrid zero dynamics approach and the other is
a method using piece-wise reference trajectories with a sliding
mode control. In addition to low-level controller optimization,
adopting a hierarchical control structure provides even more
dramatic improvements on the system performance.

I. DISCRETIZATION OF STATES FOR MARKOV
CHAIN REPRESENTATION

Although walking motion is governed by hybrid dynamics,
discrete impacts when a foot comes into contact with the
ground provide a natural discretization of the robot motion,
which motivates studying step-to-step dynamics of walking.
Assuming finite probabilities for high enough disturbances
encountered while walking, underactuated bipedal robots are
destined to fall. In case the failure rates are low (but non-
zero), walking is metastable for the system as shown in
Figure 1.

Fig. 1. Starting from State-1, the probability of moving to State-3 goes
to 1 in time, so State-1 is not stable in the strict sense. However, if the
transitions from State-1 to State-2 are quite rare, then it is misleading to
say State-1 is unstable. In this case State-1 is said to be metastable. In this
representative figure, State 1, 2, and 3 correspond to walking, stumbling,
and failure respectively.

Given a walking controller and one-degree-of-freedom
underactuation, the set of states which the robot may be
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found in at the end of a step turns out to be a quasi-2D
manifold of the entire state space [1], which can be well-
represented with a low number of states for our purposes.
Then, assuming a stochastic terrain leads to Markov chain
representation of the walking motion.

II. STABILITY METRIC DEVELOPMENT

When the concern is stability, the walking motion can
be approximated to consist of just two states as shown in
Figure 2. The robot is able to take the next step without
falling with probability λ2, the second largest eigenvalue
of the transition matrix associated with the original Markov
chain in hand [2]. The remaining probability (1− λ2) maps
the walking state to failure in the next step.

Fig. 2. Approximation of the walking dynamics. With λ2 probability, the
robot takes the next step successfully, it fails otherwise. λ2 is the second
largest eigenvalue of the Markov chain.

The structure given in Figure 2 allows easily calculating

expected number of steps before falling =
1

1− λ2
. (1)

III. OPTIMIZATION AND BENCHMARKING OF
(LOW-LEVEL) CONTROL ACTION

Using the quantification in (1), the performance of a
walking controller can be optimized or benchmarked. While
this method is applicable to any controller scheme, we study
two particular control strategies as case demonstrations. One
scheme is the now-familiar hybrid zero dynamics (HZD) ap-
proach and the other is a method using piece-wise reference
trajectories with a sliding mode control (SMC).

A. Optimization

We first optimize the performance of HZD control scheme
as shown in Figure 3. As suggested in the original HZD
paper [3], we first constraint speed to be 0.8 m/s and optimize
for energy. We then remove the constraint and minimize the



energy consumption. Finally, we optimize the controller’s
stability by using

maximize
controller
parameters

{
Expected

Number of Steps

}
= maximize

controller
parameters

{
1

1− λ2

}
. (2)

Fig. 3. Optimization of HZD control scheme. Slopes ahead of the robot
are assumed to be normally distributed with µ = 0.

To show the applicability of our method, we also optimize
another controller scheme, which uses piece-wise reference
trajectories with a sliding mode control (SMC). The results
in Figure 4 shows great improvement in the system perfor-
mance.

Fig. 4. Optimization of SMC control scheme. Slopes ahead of the robot
are assumed to be normally distributed with µ = 0.

B. Benchmark

The second use of (1) allows comparing different con-
trollers’ performances. In Figure 5 we benchmark the per-
formance of the HZD and SMC controller schemes when
they are optimized for stability. While this comparison is not
fair to the HZD controller, because it is originally designed
for flat terrain, our goal is to illustrate the benchmarking
capability of our performance quantification.

Fig. 5. Benchmarking of HZD and SMC control schemes optimized for
stability. Slopes ahead of the robot are assumed to be normally distributed
with µ = 0.

IV. HIGH-LEVEL CONTROL DESIGN

One could easily imagine different controllers having
various advantages under a variety of conditions, e.g., some
controllers might walk better uphill, some may achieve the
speed we desired, some may be more energy efficient, or
others may have the step width we need. These controllers
might be designed using different controller schemes and
they can be optimized for different cost functions. A very
intuitive idea at this point is to adopt a hierarchical control
structure as shown in Figure 6. The high-level controller then
choses the right low-level controller at each step using the
optional noisy terrain estimation and state information.

Fig. 6. Hierarchical control structure. The high-level controller then choses
the right low-level controller at each step using the optional noisy terrain
estimation and state information.

Figure 7 shows the resulting performance of adopting such



a high-level control [4].

Fig. 7. The improvement of adopting a high-level controller drawn in
Figure 6. Slopes ahead of the robot are assumed to be normally distributed
with σ = 1.
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