
Motor learning in the game QWOP
Matt Sheen* and Andy Ruina**

Cornell University, Ithaca, NY, USA
* mws262@cornell.edu
** ruina@cornell.edu

1 Motivation

To the general public, the problem of walking coordination
seems like it must be intuitive. We know that locomotion con-
trol is difficult, but this can be hard to demonstrate in a hands-
on way. Several years ago, a “running simulator” game called
QWOP exploded on the internet (30 million hits), becoming
notorious for its difficulty despite seemingly simple controls.
It received considerable media attention and spawned Guin-
ness World Record competitions.

We attempt to beat the world record time by learning a policy
for controlling QWOP. This game gives rise to quite a few in-
teresting challenges including: locomotion controller design
with black box dynamics, control optimization of a system
which may only be forward simulated from a fixed initial con-
dition, very low-dimensional control of a high-dimensional
system, and dealing with unusual types of noise (e.g the
game’s internal clock cycles).

2 About QWOP

QWOP is a web browser-based (Adobe Flash) ragdoll physics
game. The goal is to make a 2D cartoon athlete run 100m
on a track (although most players won’t get more than a few
meters). The player uses the Q, W, O, and P keys on the
keyboard to apply coupled torques on the legs. Q and W apply
opposite torques to the thighs; O and P apply opposite torques
to the calves. Arm and ankle torques are coupled to these
actions, and the neck is free to move.

3 Approach

Several factors limit the approach for finding a good con-
troller.

1. The game always starts with the runner at rest at the
start line. We cannot optimize certain parts of a gait or
search for initial conditions of a periodic motion.

2. We can see the state of the runner, but the dynamics are
unknown.

3. The game’s discrete physics steps make adjustments
constantly necessary and the existence of purely peri-
odic steps unlikely. We ran optimizations to find an
open loop running gait. After an initial transient, the
controls become nearly periodic. However, the discrete

timesteps means that the commands are always too long
or short.

4. Simulations run in real time only. We must be efficient
in our function evaluations.

For these reasons, we are trying variants of Q-learning. Re-
inforcement learning lends itself well to this problem since
we can do little besides observe successes and failures based
on states and actions. Much like dynamic programming, this
approach attempts to find a global value or utility of each
state/action pair. Thus the optimal control is to then follow
the trail of highest utility points. Dynamic programming usu-
ally propagates the utilities back from the solution which we
cannot do in this problem. For Q-learning, we explore from
the start point and gradually improve our estimate of the util-
ity by observing good and bad results (forward motion and
falling down). By adjusting the learning rates, we can begin
to latch onto good solutions and avoid exploring the entire
state space. Q-learning has recently been used to learn and
beat records in classic Atari arcade games [1].

4 Implementation Details and Preliminary Work

Although source code is not officially available, we have de-
compiled the game in order to add code which can pass the
runner’s state from Flash to an applet running in the browser.
This information is transmitted over a fast local connection
(UDP) to MATLAB. Commands equivalent to the Q, W, O,
and P keys are directly injected into the game. Due to large
irregularities in the game’s internal clock, all commands are
timed based on the number of physics engine steps taken (also
corresponds to the frame rate). For open loop optimization,
the sequence of keystrokes mimics that of experienced play-
ers, but the precise timings are left as decision variables. In
this case, the game becomes an integer programming prob-
lem which we perform using a version of CMA-ES (Covari-
ance Matrix Adaptation - Evolutionary Algorithm [2]). We
are able to get long open loop runs (roughly 40m so far) un-
der these ideal circumstances, but since the game’s internal
clock varies constantly in the unhacked version of the game,
we will need feedback to actually break the record.

For reinforcement learning of a policy, we are currently using
the state of the torso + a phase of the legs as a proxy for the
full state. This is based on the intuition that torso angle and
height seems to be the primary attributes good players look

at to adjust controls. Rewards for individual moves are based
on horizontal distance traveled since the last action. We are
using a discretized state to look up controls. This approach
has preliminarily yielded runs 15m. The discretization needs
much adjustment, and we may find it necessary to use a func-
tion approximator like an artificial neural network.

Figure 1: A screenshot from the game QWOP.

References
[1] Mnih, Volodymyr, et al. ”Playing atari with deep rein-
forcement learning.” arXiv preprint arXiv:1312.5602 (2013).

[2] Nikolaus Hansen. A CMA-ES for Mixed-Integer Non-
linear Optimization. [Research Report] RR-7751, 2011

