Computing the Finite Time Region of Attraction for Limit Cycles
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1 Introduction

The stability of human and robotic gait has long been an im-
portant criteria during the evaluation and construction of lo-
comotor patterns. In contrast to other techniques for compar-
ing gaits (e.g. cost of transport), numerical tools to determine
the basin of attraction of a steady state locomotor patterns
have been lacking. Given the absence of such tools, various
metrics have been proposed to measure the local stability of
walking systems such as the Floquet multiplier, the Lyapunov
exponent, or the Poincare map. Unfortunately, aside from
exhaustive simulation, the determination of the region of at-
traction of a locomotor pattern remained elusive until the de-
velopment of Sums-of-Squares Programming which required
solving a non-convex optimization problem using bilinear al-
ternations [4].

We present an entirely convex technique using occupation
measures to calculate the finite time region of attraction of
a steady state locomotion pattern. In addition, we describe
how the same technique can be used to simultaneously de-
sign a feedback control law that maximizes the size of the
finite time basin of attraction of a steady state pattern. While
we also use Sums-of-Squares programming, this technique al-
lows the analysis of hybrid polynomial systems up to systems
of 8 states. The utility of this approach is illustrated on the
rimless wheel and compass gait walkers.

2 Background

To compute the region of attraction to a limit cycle of a hybrid
dynamical system, we begin by constructing an efficient de-
scription of trajectories at any instant in time using the support
of a measure. The relationship between each measure which
is defined at distinct times is formalized under the given dy-
namics via Liouville’s Equation [1, 5]. As a result, if a mea-
sure at some fixed final time with support equal to the limit
cycle is given, then an infinite dimensional linear program can
be constructed that is provably able to compute a measure at
some initial time whose support is identical to the time limited
region of attraction of the given limit cycle.

To implement this infinite dimensional linear program, we use
Lasserre’s semi-definite hierarchy[2] and assume that the hy-
brid dynamical system is polynomial. This results in a se-

quence of convex optimization programs with provably van-
ishing conservatism each constructing an outer approximation
to the true time limited region of attraction of the given limit
cycle [5]. In fact, this same approach can be used to perform
control synthesis while determining the largest possible time
limited region of attraction to a given limit cycle [3].

3 Model

We consider two models of passive biped walking: the rim-
less wheel and compass gait walking down an inclined slope,
shown in Figures 1a and 1b with parameters in Table 1. Using
our approach, we compute the finite time region of attraction
to the limit cycle for both systems which are illustrated in Fig-
ures 2 and 3. For the rimless wheel, we apply our numerical
method to the 3rd order Taylor approximation of the dynam-
ics. For the compass gait, we apply our numerical method to
the Sth order Taylor approximation of the dynamics about the
origin. For both systems, we assume that the measure defined
at the final time has support confined to a neighborhood of
radius 0.01 around the limit cycle.

(a) Rimless Wheel

(b) Compass Gait

Figure 1: Walking Models

4 Results

The computed finite time region of attraction for the rimless
wheel walker and the compass gait are shown in Figures 2
and 3 !, respectively. To evaluate the accuracy of the com-
puted regions, we simulate the trajectories for Sk (and 20k)
randomly sampled initial conditions inside (and outside) the

Isince it has a four dimensional state space, to generate Figure 3, we fix

the stance (swing) leg to the limit cycle and find the swing (stance) leg states
that are inside the computed region of attraction.
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(a) Parameter values for Rimless Wheel
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(b) Parameter values for Compass Gait

Table 1: Parameters

Rimless Wheel Phase Plot
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Figure 2: The finite time region of attraction, shaded in blue,
for the rimless wheel’s limit cycle which is drawn with the
dotted black line. The guard is denoted by the dotted blue
line on the right and reset to the red line on the left. The time
horizon is 20s.

region. For each trajectory, we compute the minimum norm
difference to the limit cycle. For the rimless wheel, we con-
sider the percentage of trajectories starting in the region that
hit the target set. For the compass gait, we consider the per-
centage of trajectories that end near the target set, a distance
of 0.1 about the limit cycle. The result of this evaluation is
described in Table 2.

For the rimless wheel, we find that 96% of initial conditions
in the computed region of attraction reaches the target set. For
the compass gait, we find that 78% of initial conditions end
near the target set.

Model | Inside accuracy (%) | Outside accuracy (%)
RW 96.0 0.0
CG 78.35 2.95

Compass Gait Phase Plot
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Figure 3: The finite time region of attraction, shaded in gray,
for the compass gait’s limit cycle. The swing and stance leg
limit cycles are projected down to the (6, 8) domain and de-
noted by the blue and red line, respectively. The time horizon
is Is.

5 Discussion

We present a convex algorithm to determine the finite time
region of attraction for steady state locomotor patterns and il-
lustrate its utility on two common models of gait. Currently,
the computed region has an accuracy of 96% for the rimless
wheel and 78% for the compass gait. Future work includes
incorporating control inputs which will increase the region of
attraction of these walking systems and applying this method
to additional walking models. Preliminary experiments illus-
trate that we are able to construct feedback control inputs with
the same procedure that more than double the size of the re-
gion of attraction to each limit cycle. We are also working on
applying this method to higher dimensional models of walk-
ing.
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