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Exploration-based learning of a stabilizing
controller predicts locomotor adaptation

Nidhi Seethapathi 1,2 , Barrett C. Clark3 & Manoj Srinivasan 4,5

Humans adapt their locomotion seamlessly in response to changes in the body
or the environment. It is unclear how such adaptation improves performance
measures like energy consumption or symmetry while avoiding falling. Here,
we model locomotor adaptation as interactions between a stabilizing con-
troller that reacts quickly to perturbations and a reinforcement learner that
gradually improves the controller’s performance through local exploration
and memory. This model predicts time-varying adaptation in many settings:
walking on a split-belt treadmill (i.e. with both feet at different speeds), with
asymmetric leg weights, or using exoskeletons — capturing learning and
generalization phenomena in ten prior experiments and two model-guided
experiments conducted here. The performance measure of energy mini-
mization with a minor cost for asymmetry captures a broad range of phe-
nomena and can act alongside other mechanisms such as reducing sensory
prediction error. Such a model-based understanding of adaptation can guide
rehabilitation and wearable robot control.

Humans readily adapt their locomotion to diverse environmental
conditions and bodily changes1–3 (Fig. 1a), but the computational
principles underlying such adaptation are not fully understood. While
crucial adaptation phenomena have been uncovered through careful
experiments2–8 and a handful ofmodels have been proposed to explain
individual experiments2,9,10, an integrativeunderstandingof adaptation
across paradigms and timescales is missing. Moreover, existing adap-
tation models are not implemented on a bipedal physics-based agent,
and therefore do not encompass the stability-critical nature of adapt-
ing locomotion while avoiding falling. In this work, we put forth an
integrative model of locomotor adaptation combining stabilizing
control, performance-improving reinforcement learning, and
performance-based memory updates. Our model predicts locomotor
adaptation phenomena across paradigms in ten prior studies and two
prospective experiments conducted in this study.

Theories of motor adaptation have predominantly been devel-
oped for discrete episodic tasks such as reaching with the arm11–13.
Adaptation principles that explain such episodic tasks may not be
sufficient for explaining continuously cascading stability-critical tasks

such as locomotion, multi-fingered manipulation, and many activities
of daily living. In episodic tasks like reachingwhere the arm’s state is re-
set at the end of each episode, the errors during one episode do not
dynamically propagate to the next episode. In contrast, in con-
tinuously cascading tasks like locomotion, errors can have short-term
and long-term consequences to stability unless otherwise
controlled14–17. Prior accounts of locomotor adaptation2,9,18 do not
consider the interaction with locomotor dynamics, perhaps assuming
that dynamic stability is ensuredby adistinctmechanism. For instance,
metabolic energy reduction-based accounts2,19 treated adaptation to
be a univariate optimization process – implicitly assuming that chan-
ges on one step do not affect the next step through the dynamics.
Similarly, error-based learningmodels developed for arm reaching11–13,
when applied to locomotor adaptation9,10,18,20,21, do not usually interact
with the locomotor dynamics; these models fit the kinematic sym-
metry error transients, without considering how these errors might
affect stability. Here, we put forth a model that explains how humans
adapt continuously during walking while maintaining dynamic
stability.
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Improving some aspects of performance is a driving force for
motor adaptation and learning. However, we do not understand which
performance objectives explain diverse locomotor adaptation phe-
nomena. Minimization of different types of error11,12,22–24 (e.g., sensory
prediction error, task error, proprioceptive conflict) or minimization

ofmetabolic energy2,7,8,25 have been separately posited as performance
objectives underlying locomotor adaptation. However, these perfor-
mance objectives often do not generalize across settings. Metabolic
energy minimization can explain steady state adaptation in some
experimental settings25,26 but does not in other settings27. Similarly,
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Fig. 1 | Ahierarchical framework for locomotoradaptation. aHumans are able to
adapt readily to numerous locomotor task settings, both familiar and novel.
b Description of the proposed hierarchical learning framework, containing three
components: (i) the inner loop, represents a fast timescale response due to the
stabilizing feedback controller (blue), aimed at avoiding falling; (ii) an outer loop,
represents reinforcement learning (red) that tunes the parameters of the inner loop
controller to improve some performance objective; (iii) storing and using mem-
ories of the learned controllers (green). Alternative adaptation mechanisms may
include different performance objectives within the same framework (energy,
symmetry, task error) or may replace the feedback controller by a sensorimotor
transformation with a state estimator followed by the controller. These compo-
nents act on the physics-based model of the human (Supplementary Fig. 1),
allowing it to respond to perturbations and continuously adapt to new situations.

c Reinforcement learning by mining exploratory noise to estimate gradient and
improve the controller. Initially, the controller parameters p1 and p2 are near the
optimumof the initial performance landscape (blue). When conditions change, the
performance contours change (blue to orange) as does the optimum. Exploratory
noise in the controller parameters, allows the learner to estimate thegradient of the
performance objective and follow the negative of this gradient to improve per-
formance. d Memory takes in task parameters and returns the stored controller
parameters pmemory and the associated performance value Jmemory. We describe
how memory is used in concert with gradient-based learning. The control para-
meters pi are updated toward memory pmemory when doing so improves perfor-
mance (memory use); memory is updated toward the current parameters
otherwise. Updates toward memory is degraded if these updates are not aligned
with the gradient, and this degradation is mediated by a modified cosine tuning.
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while error-based learning models can be fit to asymmetry changes in
some tasks3,4,6,10,18,24, they cannot make predictions for tasks where
there is no changes in the symmetry28,29. A computational model that
precisely specifies the performance objectives such as energy, sensory
prediction error, proprioceptive conflict, etc. would help identify the
performance objectives that predict locomotor adaptation phenom-
ena across tasks. Here, we put forth such a predictive model of loco-
motor adaptation allowing comparisons between the predictive ability
of different performance objectives, finding that energy minimization
predicts the broadest range of phenomena.

In this work, we contribute a model of adaptation that causally
links the body dynamics, stabilizing control policy, learning algorithm,
performance goal, internal model of performance, and memory of
control. Wemodel adaptation as an exploration-driven gradient-based
improvement of a stabilizing controller, explaining how humans
improve their locomotor performance continuously whilemaintaining
stability. Our model predicts adaptation phenomena in ten prior
experimental studies and two model-guided experiments conducted
here. The model captures learning phenomena such as fast timescale
response followed by slow timescale adaptation, savings, faster de-
adaptation, generalization, non-learning in some situations, and the
effect of noise and prior experience. By modifying the performance
objective, we show that our modeling framework can help compare
theories of locomotor adaptation such as minimizing energy, sensory
prediction error (via proprioceptive realignment), or kinematic task
error (e.g., asymmetry) in their ability to explain phenomena.

Results
A modular and hierarchical model of locomotor adaptation
We posit a modular and hierarchical model of locomotor adaptation
(Fig. 1b–d) in which a controller keeps the human stable, a gradient-
based reinforcement learner modifies this stabilizing controller to
improve performance, an internal model learns to predict perfor-
mance in a new environment, and a memory mechanism stores the
improved walking strategies and deploys them when advantageous.
The model is modular in that there are separate but interacting mod-
ules performing distinct tasks (stabilizing control, gradient estimation,
gradient-based learning, memory update); the model is hierarchical in
that some modules operate at and explain phenomena at distinct
timescales that are hierarchically separated. We test the ability of the
computational model to predict experimentally observed locomotor
adaptation phenomena in a number of experiments: see our repository
LocAd30 for the code implementing the model.

A critical constraint on human locomotion is being stable i.e. not
falling down, despite internal and external perturbations. Thus, a sta-
bilizing controller forms the inner-most level of our hierarchical
model16,17,31 (Fig. 1b), allowing the physics-based biped model (Sup-
plementary Figs. 1, 2) to walk stably. We posit that during locomotion
in a familiar setting, humans use a previously learned controller, which
we call a ‘default controller,’ stored as a motor memory. We further
posit that the structure of this default controller constrains how
humans adapt to a novel situation. We characterized this default
controller by modeling how humans respond to small deviations from
nominal walking on the treadmill16,17,31. This controller can be decom-
posed into a feedforward component, not dependent on the biped’s
state, and other state-dependent feedback terms (see Methods). The
same initial default controller can be used for all the locomotor
adaptation tasks considered here (see Methods and Supplementary
Methods) because the controller is robust to substantial noise and
uncertainty as we have previously shown16,17, allowing the human to
move stably in novel environments.

It has been hypothesized that the nervous system chooses
movements that optimize some performance objective, for instance,
reducing energy expenditure8,32–36 or reducing left-right
asymmetry3,18,24,37 (Fig. 1b). We posit that when faced with a novel

circumstance, humans gradually change their default stabilizing con-
troller to optimize performance. This performance improvement is
achieved through gradient-based reinforcement learning in an outer
loop around the stabilizing controller (Fig. 1b, c). We found that
allowing the reinforcement learner to adapt just the feedforward terms
of the controller, leaving the stabilizing feedback gains unchanged, is
sufficient to explain the observed phenomena. The learner estimates
the gradient descent direction using ‘intentional’ exploratory
noise2,13,38 in the neighborhood of the default controller, contributing
to increasing the step-to-step variability16,17,31. While the term ‘reinfor-
cement learning’ has a multitude of algorithmic specifications39, here
we use this term as shorthand for the proposed local exploration-
based learning algorithm.

Motor adaptation involves memorization and retrieval of control
policies. Here, we posit a module in the outer loop that forms longer-
term motor memories40,41 of the controllers being learned, para-
meterized by the settings in which they were learned. This stored
memory is used when encountering a setting similar to one previously
encountered (Fig. 1b, d), interpolating and generalizing between set-
tings via function approximation39. Stored memory is only used when
it may improve performance and does not conflict with gradient des-
cent (Fig. 1d). Conversely, storedmemory is updated when the current
controller’s performance is better than that of themotor memory. See
Methods and the model’s implementation in code, LocAd30, for further
details.

We have posited that the gradual modification of a stabilizing
controller for performance optimization is a primary mechanism for
locomotor adaptation. Adaptation may also result from other
mechanisms such as recalibration to reduce sensory prediction
error11,22,42,43. Here, we extend the aforementioned framework, showing
that the model can incorporate sensory error-based adaptation
mechanisms, replacing the feedback controller of Fig. 1b by a more
general sensorimotor transformation (see Methods).

Predicting fast and slow timescale learning in many locomotor
settings
The model predicted locomotor adaptation phenomena in many dif-
ferent conditions, including a split-belt treadmill, an asymmetrically
added legmass, external assistance, exoskeleton-based perturbations,
and abrupt treadmill speed changes (Fig. 2). For the reinforcement
learner, we tested minimizing four performance objectives: only
energy expenditure, only asymmetry (specifically, step length asym-
metry, defined below), a weighted sum of energy and asymmetry, and
a kinematic task error. For the results below, we use energy expendi-
ture alone or energy expenditure with a small step length asymmetry
penalty as the performance objective as these give qualitatively similar
results, we use the latter when the performance objective is not
explicitly mentioned. The minimization of other objectives is dis-
cussed in their own separate sections later.

The most popular experimental paradigm used to investigate
human locomotor adaptation is walking on a split-belt treadmill4,6,7,44,
which has two side-by-side belts that can be run at different speeds.
Most humans have never experienced this novel situation. Humans
adapt to walking on a split-belt treadmill on the timescale of seconds,
minutes, and hours, exhibiting stereotypical changes in their walking
motion1,45,46 and the model predicts these changes (Fig. 2a).

Specifically, within a few strides of split-beltwalking, humans start
walking with high negative step length asymmetry4,44 – that is, the step
length onto the slow belt is longer than the step length onto the fast
belt (see Fig. 2a and Supplementary Fig. 1e). This is the fastest time-
scale of adaptation, sometimes called early adaptation. This negative
step length asymmetry becomes close to zero over a few hundred
strides (about ten minutes), and then becomes slightly positive with
more time7. The model predictions exhibit all these fast and slow
transients both when minimizing just energy or energy plus a cost for
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step length asymmetry (Fig. 2a). The model predicts an immediate
initial increase in energy cost upon encountering the split-belt condi-
tion, which then reduces to a lower steady state gradually, as found in
prior experiments6. When the split-belt condition is removed, the
model predicts a fast-timescale transient to large positive step length
asymmetry (a learning after-effect) and then a slowde-adaptation back
to normal walking. The model predicts this de-adaptation to be faster

than the adaptation, as found in experiments4,7,44 (Fig. 2a). The model
also predicts that a steady state is reached more quickly for step time
asymmetry, and that the energy cost is more sensitive to step time
asymmetry compared to step length asymmetry (Supplementary
Fig. 3), as suggested by some prior experiments6,47.

Human adaptation proceeds analogously when they are made to
walk with an extra mass attached asymmetrically to just one ankle, as
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characterized by a prior experiment5. The model predicts the qualita-
tive features of such adaptation, whether the performance objective is
just energy or has an additional symmetry term (Fig. 2b). In both
experiments5 and in our model, the walking gait becomes asymmetric
in step length and then, during slow timescale adaptation, gradually
tends toward symmetry; when the extra mass is removed, the asym-
metry jumps to the opposite side, and then gradually de-adapts to
normal walking.

The model predicts the step frequency changes while walking at
varying speeds on a ‘tied-belt’ treadmill – which is just a regular tread-
mill with one belt, or equivalently, a split-belt treadmill with equal belt
speeds (Fig. 2c). In prior experiments28 in which the belt speed was
changed every 90 seconds, humans quickly adapt their step frequency
within 2 seconds and then slightly adjust their step frequency over a
longer timescale — with the initial fast transient either overshooting or
undershooting the ultimate steady-state frequency slightly. In previous
work28, the overshooting and undershooting transients required sepa-
rate fits, whereas our model predicts both with the same framework.

The model captures empirical findings of how humans adapt to
exoskeleton assistance. In some prior experiments29,48, humans were
provided with time-periodic ankle torque impulses via a robotic
exoskeleton (Fig. 2d). If the time period of these external impulses was
close to the human stride period and the impulsemagnitudewas in the
right range, individuals changed their stride frequency to entrain to
this external impulse frequency, as predicted by themodel (Fig. 2d–ii).
Both model and experiment show entrainment that approximately
aligns the external impulse with the transition from one step to the
next (Fig. 2d–iii). The model can show entrainment whether the
external impulse frequency is faster or slower than the stride
frequency29,48,49, as found in prior experiments, while prior model-
ing work has captured entrainment for higher frequencies only with
feedback control and without learning29. As in prior experiments29,48,
the model does not entrain on every trial but only on some fraction of
the trials. Rather than provide such time-periodic assistance, if the
external assistive forces from the exoskeleton are a simple function of
the current body state (and not too noisy), the learner predicts suc-
cessful adaptation toward the new performance optimum (Supple-
mentary Fig. 4). We consider other such exoskeleton adaptation
studies later in this manuscript.

Lesions in simulation identify modules responsible for the fast
and slow adaptation transients
We can analyze which hypothesized modules in the model are
responsible for explaining specific observations by the computational
analog of ‘lesion experiments’: that is, turning off specificmodules and
noting what experimentally observed adaptation feature is degraded
or lost. The following observations apply to all but the exoskeletal
entrainment of the previous section, but we center the discussion on
split-belt walking.

Turning off the default stabilizing controller by setting all feed-
back gains to zero often makes the biped fall to the ground when the
novel condition is initiated. Lowering the feedback gains to near zero
results in falling or degraded learning (Fig. 3a, b) in the presence of
sensory noise. Thus, the stabilizing controller is critical for effective
locomotor adaptation. Further, this exercise of lowering the feedback
gains closer to zero leaves a large fraction of the initial transients
intact (Fig. 3a).

The fastest transient (early adaptation i.e., the initial response
immediately upon experiencing the new condition) is entirely due to
the default controller and the natural dynamics of the biped. Turning
off both the reinforcement learner and the memory mechanism still
results in the fast timescale initial response due to the stabilizing
controller (Fig. 4a). Recent experiments partially corroborate this
prediction, showing that providing gait stability through other
means (e.g., handrail) affects this initial transient50,51, though such

experiments may have changed other aspects of the gait than just
stability.

The slow adaptation transient when first exposed to the novel
condition is due to the reinforcement learner improving performance.
Turning off the reinforcement learner and the memory mechanism
with zero learning rates results in the fast timescale initial responsedue
to the stabilizing controller (Fig. 4a), but no slow timescale adaptation
response. Thus, the stabilizing controller alone cannot explain the slow
transients. Turning on the reinforcement learner results in a slow
timescale adaptation response. Changing the learning rate for the
reinforcement learner modulates the speed of this slow adaptation
(Fig. 4b). In the first exposure to these novel situations, there is not yet
any memory to call upon, and therefore, memory specific to the novel
situation does not contribute to the first adaptation.

De-adapting to a familiar situation (equal belt speeds) after expo-
sure to a novel situation will involve the use of stored memory of the
familiar situation. Specifically, in split-belt walking, our model predicts
that the de-adaptation will be faster than adaptation due to the use of
storedmotormemory of walking with tied-belts (Fig. 2a)6,45. Turning off
this memory use, the de-adaptation is slower than adaptation (Fig. 4c).
During the first adaptation to a novel setting, the slow transients are
governed by gradient descent, whereas during de-adaptation back to a
familiar setting, the slow transients are sped up due to the summing of
gradient descent and progress toward stored memory (Fig. 1d).

Explaining savings, generalization, and anterograde non-
interference
‘Savings’ refers to the faster re-learning of a task that has previously
been experienced. In prior experimental work, such faster re-learning
during a second split-belt adaptation experience was observed1,52,
despite having a prolonged tied-belt period between the two adapta-
tion periods (Fig. 5) — this intervening tied-belt period allows for full
‘washout’, complete de-adaptation in terms of observable variables.
Here, our model qualitatively predicts such empirically observed sav-
ings (see Fig. 5 and SupplementaryTable 1 for statistics). Such faster re-
learning in the model is due to the motor memory mechanism, which
stores how the controller changes under different situations. Motor
memories are formed during first exposure to a novel condition, and
thenwhen exposed to this condition again, the re-learning is faster due
to gradient descent and memory use acting synergistically (Fig. 1d).
Because the motor memories are task-dependent, memories for split-
belt adaptation do not decay entirely during tied-belt washout as the
two tasks are non-overlapping. This persistent memory from the first
exposure to split-belt walking results in the observed savings.

‘Generalization’ is when adaptation under one task condition
results in savings or faster adaptation for a different task condition.
Humans exhibit generalization during locomotor adaptation and our
model predicts this phenomenon (Supplementary Fig. 5a, b). Specifi-
cally, in one prior experiment53, humans exposed to a split-belt trial A
showed savings for a split-belt trial B with a smaller speed difference
between both belts than A. Thus, experience with task A sped up
adaptation to task B, suggesting that humans generalized from A to B.
Further, it was observed53 that such savings for task B from experien-
cing task A (with the larger belt-speed difference) were higher than the
savings obtained if the first adaptation experience was with task B
instead. Our model predicts both these generalization phenomena
(Supplementary Fig. 5a, b) due to the motor memory being con-
tinuously parameterized with respect to continuous-valued task
parameters (here, belt speeds), so that the controller for intermediate
conditions is interpolated even if they are never directly encountered.
Suchgeneralizationcannot bepredictedbymodels inwhichmemories
are stored discretely without interpolation2.

‘Anterograde interference’ is when adapting to one task makes
you worse at adapting to the ‘opposite’ task: opposite locomotor
adaptation tasks could be split-belt walking tasks with belt speeds
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switched. Contrary to arm reaching adaptation studies where such
anterograde interference is observed41, our model predicts that such
interference need not happen in locomotion: that is, adapting to one
perturbation need not make you worse at adapting to the ‘opposite’
perturbation if there is a sufficient tied-belt washout period between
the two adaptation phases (Fig. 6a). This non-interference can be
explained by the memory mechanism incorporating a function

approximation, so that it can meaningfully extrapolate the learned
controllers to the opposite perturbation aswell. Suchnon-interference
was indeed found in prior locomotor experiments52.

To further test the model’s predictions on how prior experience
shapes adaptation, we performed prospective experiments here: we
tested adaptation to two opposite split-belt tasks A and B without a
washout period (see Fig. 6b),while prior experiments had a substantial

Fig. 3 | Significance of the stabilizing feedback controller: avoiding falling and
improving learning. a The default controller provides robust stability to the biped
despite noise and environmental changes. Substantially lowering the feedback
gains, all by the same factor, reduces the effective adaptation rate and increases
gait variability. The sensorynoise in these simulations isfixed across these feedback
gain conditions and is added to velocity feedback to the feedback controller.
Adaptation phases are shaded in blue. b Lowering the feedback gains even further
results in falling of the biped upon introducing the split-belt perturbation. Three

walking patterns are shown: normal tied-belt walking that has symmetric step
lengths, split-belt walking with default feedback gains resulting in stable but
asymmetric gait, and split-beltwalkingwithmuch-reduced feedbackgains resulting
in falling. In the bottom-most row, the center of mass trajectories for each stance
phase are shown relative to the respective stance belt frame for visualization pur-
poses (so that the split-belt trajectories for the different stance phases are with
respect to different frames).
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washout period between the split-belt phases52. We found that the
model predicted both the increased initial step length asymmetry
transient due to the recent adaptation to the opposite task and the
insignificant changes to adaptation time-constants (see Fig. 6b and
Supplementary Table 1 for comparisons and statistics).

More generally, our model qualitatively captures the effects of
different split-belt adaptation protocols, for instance, capturing the
time course of step length asymmetry when the split-belt phase is
introduced gradually or abruptly, and whether these adaptation pha-
ses are short or extended18,20 (Supplementary Fig. 6). Having a longer
duration adaptation phase in which the perturbation grows gradually
maysometimes result in less savings thana shorter adaptationphase in
which the perturbation began abruptly and remains constant (Sup-
plementary Fig. 6). In previous work, an explicit memory of errors was

used to explain some of these results9, but we have provided an
alternative explanation via differentmodel assumptions. In these cases
(Supplementary Fig. 6),we found that the adaptation to different kinds
of exposure to gradual and abrupt conditions can dependonprotocol-
specific parameters (e.g., duration of different phases, perturbation
magnitude, learning rates); this suggests that one must be cautious of
claiming general trends based on limited experiments.

The model predicts how the size and duration of perturbations
affects adaptation1,18,53. In split-belt walking, both in the model and in
prior experiment53, being exposed to a larger belt-speed split results in
larger initial transients and more positive final asymmetry (Supple-
mentary Fig. 5c). Being exposed to a condition for a shorter period of
time results in smaller savings than being exposed to the condition for
longer18 (Supplementary Fig. 6).
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tance, red indicates exoskeleton assistance condition, and green indicates
metronome-tracking condition in addition to exoskeleton assistance. In the right-
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Degraded learning, non-learning, and making non-learners
adapt via experience
The human motor system has sensory noise and motor noise that is
not fully observable, and is thus distinct from intentional exploratory
noise. The results presented thus far were obtained with low levels of
sensorimotor noise. When the sensorimotor noise is less than a critical
threshold, it preserves the qualitative results despite degrading the
gradient approximation and thus degrading the effective learning rate
(Fig. 4d). Large enough sensorimotor noise for fixed exploratory noise
destroys the reinforcement learning entirely, resulting in no kinematic
adaptation or energy reduction upon first exposure (Fig. 4d), poten-
tially explaining why some populations with movement disorders may
have impaired learning54.

Prior adaptation experiments involving exoskeleton assistance
found that some humans were able to adapt spontaneously whereas
others did not2,8,27. The non-spontaneous learners, when exposed to
broad experience with a lower associated metabolic cost, were able to
adapt toward the energy optimum2,8. In our model, both spontaneous
learning and non-learning was possible depending on the size of sen-
sorimotor noise: low noise resulted in spontaneous learning and high
noise resulted in non-learning. As in experiment2,8, the model’s non-
learners could be made to adapt toward a lower energy cost by giving
them broad experience on the energy landscape, giving them experi-
ence of a lower energy cost to be stored in memory (Fig. 4e). In our
model, this adaptation upon providing experience stems from motor
memory formation and later memory use in addition to improving
performance through gradient descent.

In addition to intrinsic sensorimotor noise, adaptation to external
devices such as exoskeletons or treadmills could also be degraded by
‘device noise’. Our model predicts that split-belt adaptation can be
degraded via such device noisewhen implemented as noisy belt speed
fluctuations that are large enough (Fig. 7a). To test this model pre-
diction prospectively, we performed human experiments and com-
pared the post-adaptation after-effects of noise-free and noisy split-
belt protocols. We found that participants had lower after-effects after
the noisy adaptation condition, as predicted by the model; see Fig. 7a
and Supplementary Table 1. This device-noise-based degradation may
seem in conflict with earlier experiments by Torres-Oviedo and
Bastian20, who compared adaptation in a split-belt protocol under
noise-free and noisy belt speed conditions and found that the noisy
version had higher adaptation as judged by the post-adaptation after-
effects. However, our model also captures this improved adaptation
due to a different implementation of device noise in this prior
experiment20 by incorporating that specific experimental protocol in

themodel (Fig. 7b), thus reconciling the seemingly conflictingfindings.
These results illustrate that the details of the noise pattern (e.g.,
magnitude and temporal correlations, see Methods) and the adapta-
tion protocol used are important to determine the impact of device
noise on adaptation, i.e., there are many ways to add device noise and
some may enhance learning and others may degrade it.

Aside from noise-based explanations, we provide one more
potential cause for initial non-learning observed in some exoskeleton
studies: delay between human action and exoskeleton response. Many
exoskeleton adaptation experiments in which participants did not
spontaneously adapt2,8,27 had an exoskeleton controller that provided
assistance or resistance based on the participant’s previous walking
step, resulting in a delay between action and energetic consequence.
We showed that such delays can degrade or even stop gradient
descent-based learning (Supplementary Fig. 7), making adaptation not
obligatory. The gradient estimate is degraded due to poor credit
assignment: when there is a delay, the reinforcement learner in our
model associates the effect with an incorrect cause, as the learner’s
inductive bias assumes no such delays.

Alternative to energy minimization: Comparing to minimizing
asymmetry
To explain split-belt adaptation, researchers have treated the left-right
asymmetry in step length as the error being corrected, fitting equa-
tions with one or two time constants to describe the observed
decrease in this asymmetry1,9,10. Here, we examined what predictions
our model makes if step length asymmetry is used in our optimization
framework as the only performance objective, a variant of another
study24 in which foot contact time symmetry was optimized. We find
that minimizing asymmetry does not fully capture the slow timescale
transients in either tied-belt or split-belt locomotion. First, for chan-
ging treadmill speeds during tied-belt locomotion28, minimizing
asymmetry predicts the fast timescale changes in step frequency due
to the default controller, but further slow timescale changes observed
in experiment are not predicted by an asymmetry-minimizing objec-
tive alone. During split-belt adaptation, while minimizing just step
length asymmetry, our model predicts convergence to pure step
length symmetry (Fig. 8a). This is in contrast to recent experiments
which suggest eventual convergence to positive step length
asymmetry45. In general, minimizing asymmetry is insufficient as the
lone performance objective in an optimization framework, as perfect
symmetry admits infinitely many locomotion patterns55 and does not
result in isolated local minima required for stereotypy. Thus, mini-
mizing asymmetry alone cannot predict the many steady-state
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locomotor phenomena predicted byminimizing energy during normal
locomotion28,33,56. As a corollary, when placed in any symmetric situa-
tion with a symmetric body (e.g., slopes or bilaterally symmetric
exoskeletons),minimizing asymmetrywill result in zero slow timescale

adaptation of the controller even if the mechanical environment is
changed substantially, in contrast to experimental findings2,8,27. While
minimizing asymmetry alone does not explain diverse locomotor
phenomena, minimizing a heuristically weighted combination of
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energy and asymmetry, with a small weight on the asymmetry, retains
the qualitative predictions of minimizing energy, while sometimes
allowing a better quantitative match (Figs. 2a–b and 8a). Future
experiments could delineate the extent to which humans have sym-
metry as an explicit objective in addition to energy57, given that
energy55 and other performance objectives such as proprioceptive
realignment (as shown below) may also indirectly promote
symmetry22,42.

Alternative to energy minimization: Comparing to minimizing
generalized task error
In low-dimensional adaptation tasks such as reaching with the arm to
a target, the task error to beminimized is unambiguous; for instance,
in reaching tasks with visuomotor rotation, the error is defined as the
angular distance to the reach target9,12. However, in higher-
dimensional tasks like locomotion, analogous definitions of task
error as deviation from desired body kinematics is not uniquely
defined: for instance, the total task error could be defined as a
weighted sum of the error from desired body states, with errors for
different states weighted differently — but such a weighting would
not be uniquely specified. Here, we considered a few such
relative weightings and made model predictions for minimizing
such kinematic task errors as the only performance objective (see

Methods and Fig. 8b) via the exploration-driven gradient descent
of Fig. 1b.

The resulting predictions were not entirely consistent with the
experiment. Different relative weightings resulted in distinct beha-
viors, all of which fell short of fully capturing the experimental find-
ings: the weighting that results in eventual positive step length
asymmetry, as seen in experiment, corresponded to energy increase in
contrast to experiments, and on the other hand, the weighting that
results in monotonic energy decrease has a steady state with sub-
stantial negative step length asymmetry, again in contrast to experi-
ments (Fig. 8c). A purely kinematic performance objective was
similarly found to not explain exoskeleton adaptation in prior experi-
ments, where participants achieved entrainment to exoskeleton
impulses48 or changed their walking frequency8 without plateauing at
the unassisted walking kinematics.

Alternative to performance optimization: Comparison with
proprioceptive realignment
Proprioceptive realignment has been proposed as a potential
mechanism accounting for the adaptation seen in split-belt
locomotion22,42 and for arm-reaching tasks with visuomotor
perturbations58,59. Vasquez et al42 characterized the (proprioceptively)
perceived speed of the legs after a split-belt adaptation, effectively
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finding that humans perceived the fast leg as being systematically
slower than reality or the slow leg as faster than reality or both. A causal
mechanism relating this sensory recalibration to locomotor adapta-
tion has not previously been proposed, and a mathematical model
could help establish if proprioceptive realignment could result in
symmetry changes consistent with the experiment.

We put forth a mathematical model of proprioceptive realign-
ment via sensory recalibration using our framework, which enables
linking body dynamics, sensory feedback (both proprioception and
vision), and motor action. In our model, we posit that the nervous
system expects the two legs to be on the same walking surface and
proprioceptive deviations from this sensory prediction are perceived
as an error to be corrected by recalibrating proprioception; while only
proprioception is recalibrated, vision is used as a common sensory
signal to estimate the proprioceptive conflict between the two legs
(seeMethods and Fig. 9a). This is a type of sensory prediction error12,59,
as it is due to a difference between the sensory feedback and what the
nervous system expects. This model results in recalibrated estimates
of leg speeds such that on a split-belt treadmill, the fast leg feels slower
and the slow leg feels faster than reality, as in experiment42 (Fig. 9c),
with the recalibration growing in time. The model produces no

recalibration when walking on a tied-belt, as in experiment42. We
incorporated this recalibrating proprioceptive sensing as a feedback
input to the stabilizing controller without changing other aspects of
the default controller to predict what proprioceptive realignment
alone can predict.

Proprioceptive realignment as implemented here falls short of
explaining the qualitative features of split-belt locomotor adaptation.
Specifically, while the initial negative step length asymmetry produced
by the default controller is decreased by proprioceptive realignment,
the steady state of the adaptation still has substantial negative asym-
metry (Fig. 9d), falling substantially short of experimentally observed
symmetry6,60 and positive step length asymmetry7,45, which is pre-
dicted by energy optimization. Interestingly, the model shows coin-
cidental metabolic energy decrease as a result of proprioceptive
realignment (Fig. 9e), but this energy decrease is not accompanied by
kinematic changes observed in experiment. Thus, while propriocep-
tive realignment could potentially be a partial cause of split-belt
adaptation, it does not explain all the associated adaptation phe-
nomena, as also suggested by recent experiments61. Beyond split-belt
adaptation, proprioceptive realignment cannot explain how humans
respond to tied-belt speed changes28, as experiments did not find
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under tied-belt conditions, drawn from memory. c Model predictions for mini-
mizing just task error without an energy objective; two different weightings are
used for different components of the kinematic error (red and yellow). Energy
minimization is shown for comparison (blue). For the task error predictions, one of
either step length asymmetry or energy trends disagree with split belt adaptation
experiments45: either the step length asymmetry stopswell shortof symmetrywhile
decreasing energy somewhat (yellow), or the energy transients are not mono-
tonically decreasing (red). Light green shaded region in all panels is the period of
split-belt adaption.
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significant proprioceptive realignment in the tied-belt condition42.
Finally, proprioceptive realignment via interaction with vision, as
implemented here, cannot explain adaptation to purely mechanical
changes to the body or the environment such as an added mass or an
exoskeleton.

Interaction with explicit feedback
Our framework ismeant tomodel implicit adaptation and learning, but
can accommodate explicit adaptation mechanisms acting in parallel.

One potential way to speed up locomotor adaptation is to provide
explicit verbal instruction to the participant about the desired beha-
vior or provide visual feedback on the error between desired and
actual behavior10 (Fig. 10a). Indeed, providing visual feedback on step
length asymmetry to participants on a split-belt treadmill and asking
them to reduce this asymmetry hastened the progress toward sym-
metry — compared to adaptation without this feedback10. Removing
this visual feedback partway through adaptation results in the
increased symmetry being largely wiped out, so that the asymmetry
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goes back approximately to where it would have been without
the explicit feedback. We were able to capture this phenomenon
(Fig. 10c, d) by adding a separate module for explicit control that acts
in parallel to the feedback controller in memory (Fig. 10a), as hypo-
thesized in some prior work10,23. This demonstration is mainly to show
that the implicit learner of Fig. 1b can be readily modified to accom-
modate explicit mechanisms without degrading the implicit learner’s
performance. This demonstration also shows that kinematic behavior
changes due to explicit corrections need not, by themselves, be suf-
ficient to modify implicit learning, as seen in experiments10,21.

Discussion
We have presented a model for locomotor adaptation that
captures observed experimental phenomena in ten different
studies3–8,18,20,28,48,52,53, and predicts phenomena observed in two pro-
spective experiments conducted in this study. Across these studies,
our model captures adaptation transients in both the short timescale
of seconds and the long timescale ofmany tens ofminutes. Ourmodel
also enabled us to compare different adaptation mechanisms, speci-
fically energy optimization via reinforcement learning, proprioceptive
realignment, and reducing sensory prediction error22,42,59,62, delineating
how the hypotheses differ or coincide in their predictions and allowing
testing through future prospective experiments. We have shown how

humans could adapt to perturbations to the body or the environment
while walking stably and continuously without falling or stopping, as
models of non-continuous episodic tasks such as arm reaching do not
show how this is possible.

Predictive models of motor learning such as the one proposed
here could be used to improve motor learning in the real world. We
have made predictions about conditions that may degrade or accel-
erate learning consistent with prior experiments. Given this, future
hypotheses for improving learning could be tested computationally
within our modeling framework before testing via prospective
experiments. We have tested the model by performing two such pro-
spective experiments here, one for examining anterograde inter-
ference and another for the effect belt noise. Further, such
experiments may either provide further evidence supporting the
model or information that could help improve themodel. If the goal is
to improve learning to use a device (such an exoskeleton or a tread-
mill), the device parameters and their sequencing can be optimized in
simulation to reduce the time duration to learning steady state.

Our model suggests explanations for why humans may adapt
reliably in some novel situations (for instance, during split-belt
walking4,6,20) and not others (for instance, some exoskeleton
studies2,8,19,63). One might wonder if common principles underlie such
reliable adaptation in one class of devices and unreliable adaptation in
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explicit feedback improves progress to symmetry during c adaptation and d de-
adaptation but this symmetry improvement is lost when the explicit feedback is
removed, as found in experiment10.
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another class,which is plausible given that both devices are interacting
with the same human motor control system. First, we note that both
exoskeletons and split-belt treadmills share a core dynamical similar-
ity: they are both mechanical devices that contact the body, applying
forces and performing positive or negative work of different
specifications45. Second, our results also suggest that the two classes of
devices are not fundamentally different with respect to motor learn-
ing. Our model suggests ways in which we can make participants less
reliable learners on split-belt treadmills and reliable learners on exos-
keletons andprostheses. Specifically, ourmodel predicts that split-belt
adaptation can be degraded by noisy belt speed variations (Fig. 7) —
which we confirmed with our prospective experiment. We also noted
thatmany exoskeleton studies thatdid not showobligatory adaptation
involved exoskeleton controllers that had a one-step delay between
human action and the device response2,8,19. We showed that gradient
descent can be degraded or entirely stopped in the presence of such
delays (Supplementary Fig. 7), whereas there can be reliable learning in
exoskeletons with no delay or noise (Supplementary Fig. 4); this pre-
diction can be tested by systematically manipulating the device delay
in future experiments. In summary, we suggest that humans may
exhibit better adaptation to exoskeletons if the device has low noise,
has simple consistent dynamics from step to step, and does not have a
substantial delay between human action and device response.

A potential corollary to the prediction that lowering device noise
improves learning reliability is that increasing baseline human
exploratory variability compared to unresolved sensorimotor or
device noise may improve learning reliability. It is an open question
whether baseline exploration as used by the nervous system in implicit
learning can be manipulated by an experimenter via purely external
means (that is, via sensory or mechanical perturbations or other bio-
feedback) — in a manner that results in more reliable learning. One
study that increased variability externally did notfindbetter learning64,
while another study increased learning20: our model was able to reca-
pitulate the increased learning in the latter study. Another study per-
formed amanipulation that increased both variability and learning37. It
is unclear if this increased variability specifically corresponds to
increased exploration because both studies changed the sensory or
themechanical environment, which couldhave increased variability by
increasing unresolved sensorimotor noise. Further, according to our
model, such increased variability comes with a higher energetic cost at
steady state2 as well as potentially higher fall risk, so future work could
use our model in concert with targeted experiments to delineate how
humans trade-off these competing objectives of exploration, energy,
and stability.

Our model naturally predicts the various qualitative features of
short-timescale and long timescale responses toperturbationswithout
fitting to the adaptation phenomena being explained. This is in con-
trast to the single rate or dual rate or memory of errors models of
adaptation9,18,46, which when applied to locomotor adaptation without
including bipedal dynamics and control, do require fits or specific
assumptions to capture the direction of both the slow and the fast
timescale transients. Here, we predict the short timescale response to
sudden perturbations as simply the response of the default stabilizing
controller to those perturbations, and this prediction obtains the
correct direction or sign of the responsewithout fits to the data it tries
to predict. For instance, our model naturally predicts that the
immediate transient upon a split-belt perturbation or a leg mass
addition is negative step length asymmetry (Figs. 2–4). Similarly, we
have shown that a substantial part of slow timescale motor adaptation
can be predicted by performance optimization, with energy con-
sumption as the performance objective. This model obtains the cor-
rect direction of the slow adaptationwithout any fits to the adaptation
data. In contrast, in the traditional dual rate or memory of errors
adaptation models9,11,18, the direction of slow adaptation is toward
zeroing the error and, therefore, is dictated by how error is defined.

Thus, while descriptive models9,11,18 may be fit to short and long time-
scale transients in some locomotor adaptation experiments, they do
not make predictions of the transients from more primitive assump-
tions. In addition, we have shown that some common ways of defining
error, when coupled with locomotor dynamics, may result in predic-
tions that disagree with experiments.

Our accounting of savings and memory is complementary to
previous work that have addressed savings or other related phenom-
ena via memorymechanisms centering on context inference for error-
based learning or for performance improvement2,41,46,65. These pre-
vious works did not consider the interaction of performance
improvement and stabilizing control in a complex task such as
locomotion41,46,65, as here, or when considering locomotion, did not
consider locomotor dynamics and control2. Ourmemorymodel is also
different from models that adapt the ‘error sensitivity’ (learning rate)
of adaptation via a memory of sensory errors9, which can capture
savings in the form of faster adaptation rates, but is similar to other
linear time-invariant state-space models46 in that neither model can
capture savings in adaptation rate after a complete washout66.

We have argued that predicting human locomotor adaptation
phenomena may require the following functional components: a sta-
bilizing controller, an optimizing reinforcement learner, a gradient
estimator, a memory mechanism, and possibly a module that reduces
sensory errors. Like all mathematical models of complex phenomena
(famously in string theory67), there may be multiple realizability: the
same architectural hypothesis can be expressed in different terms,
grouping some components together, dividing components into their
sub-components, or have different realizations of similar function. No
matter this multiple realizability, we have shown that a necessary
feature of locomotor adaptation is exploration in the neighborhood of
a stabilizing controller. Further, the framework implies the existenceof
a hierarchical separation of timescales of the model components68.
Specifically, the step-to-step stabilizing controller has the fastest
timescale, matching the timescale of the bipedal dynamics to prevent
falling; the timescale of gradient estimation must be slower than the
step-to-step dynamics so that the estimated gradient is reliable; finally,
the timescale of the local reinforcement learner must be slower than
the gradient estimator, so that the learner does not change the para-
meters too quickly for the gradient estimate to be reliable. Human
motor learning proceeds over multiple timescales1,46, and our
approach thus provides a natural functional account of the hierarchy
of these timescales from the necessity of stable learning68.

Our model of locomotor adaptation is hierarchical and modular.
Evidence for the hypothesis of hierarchical andmodularmotor control
goes back to hundred-year-old experiments in which decerebrate cats
produced coordinated repetitive movements but not goal-directed
movements69. It is thought that fast timescalemotor responsesmay be
mediated in part by spinal circuits while longer-timescale control,
adaptation, and context-dependent responsesmay be achieved by the
interaction of the cerebellum and motor-related areas of the
cerebrum3,24,70,71. In our model, we have separated the fast timescale
stabilizing controller and the slow timescale adaptation mechanisms
into distinct interacting modules, so that damage to just the slow
timescale adaptation module in the model could still preserve the fast
timescale stabilizing response. Such preservation of fast timescale
response to treadmill speed changeswith degraded slow adaptation to
a split-belt condition was found in participants with cerebellar
damage72,73. Indeed, such studies have established that one locus of
such slow timescale motor adaptation, especially involving sensory
recalibrations and internal model change, is the cerebellum3,11,12,72–75.
Thus, while our model is meant to be at the Marr level 1 and 2 (com-
putational and algorithmic levels)76, it could inform interpretation of
data on neural underpinnings. Conversely, neural data may allow us to
fine-tune our model architecture: for instance, modules in the model
may contain sub-modules responsible for distinct aspects of behavior
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that may be neurally dissociable (e.g., spatial and temporal slow
adaptation44,75). Some studies have suggested the preservation of
‘reinforcement learning’ despite cerebellar ataxia11,13,77, but such stu-
dies examined learning from explicit visual or auditory feedback,
which is distinct from the implicit reinforcement learning we have
proposed for energy optimization.

Human motor control strategies in highly practiced and learned
tasks tend to approximate optimal controllers78, and here we have
provided an account for how humans gradually learn such optimal
controllers in a novel environment. A related learning paradigm is that
the nervous system gradually learns an inverse model of the task
dynamics from unsuccessful trials, and then uses the inversemodel to
achieve the task79. However, such inversion does not have a unique
solution in high-dimensional tasks such as locomotion: human bodies
have infinitely many ways to solve a movement task26 and thus must
usually optimize another performance objective to obtain a unique
solution. Here, the gradient descent of the stabilizing controller
implicitly accomplishes both the inversion and the optimization, as the
resulting controller performs the task while optimizing performance.

Our model demonstrates that a local exploration-based search
strategy and a simple linear controller structure are sufficient to
describe the continuous adaptation of locomotion by human adults to
changes to their body and their environment, starting from a known
default stabilizing controller, learned under normal conditions. Our
approach may lend itself to comparison with the recently popularized
framework of deep reinforcement learning80–82, which use more
expressive controller approximations (deep neural networks) with
orders of magnitudemore parameters. Thesemethods do not assume
initialization with a default controller but instead employ a highly
exploratory search involving thousands of discrete walking episodes,
often involving falling and resetting the initial condition at the end of
each episode. Thus, these learning methods operate in a different
regime fromourmodel and are not aimed at explaining gradual human
locomotor adaptation.

Most learning requires trial and error, but attempting to improve
locomotion via simple trial and error without a stabilizing controller as
an inductive bias can result in falling or other learning instabilities. The
stabilizing controller in our model allows safe exploration and adap-
tation, and turningoff the stabilizing feedbackwhile the gait is adapted
can result in falls or at least substantially degrades learning (Fig. 3).
This shows that what control policy the learning acts on determines
the effectiveness and safety of the adaptation. We also found that a
number of alternative choices can result in falling: prioritizing energy
optimization over the near future rather than over a longer time-hor-
izon, too high a learning rate, and updating the gradient estimate too
quickly. We have posited the use of exploratory variability for rein-
forcement learning or optimization, as also suggested in a few
studies2,11,13,38, including experimental evidence for the role of
exploration in improving error-based learning38. It was not known how
such exploration could be implemented to adapt while walking con-
tinuously, without ignoring the locomotor dynamics, stability, and the
continuous nature of locomotion (i.e., not treating each step as an
independent episode). Indeed, using simple trial and error to perform
optimization, for instance, using an exploration-driven search
depending on just the previous step2,13, works for episodic arm
reaching but can result in falling or non-learning for walking with
continuous locomotor dynamics. Thus, here, we have put forth a fra-
mework for predicting how humans adapt their walking to different
conditions while continuing to be stable.

We have tested our model against a wide variety of adaptation
studies, providing broad empirical support for the model’s predictive
ability. Future work can involve the design of targeted experiments to
test the different components of this model (e.g., performance objec-
tive, adaptation algorithm)83, as these components contain heretofore
untested assumptions about locomotor adaptation. Here, we have

compared the predictive ability of performance objectives such as
energy, symmetry, and sensory prediction error, determining what
each can predict when acting alone. Future experiments can system-
atically manipulate the energy landscape, sensory feedback (e.g.,
vision), and unforeseen perturbations during adaptation to delineate
how these performance objectives are traded off by the human ner-
vous system84—ourmodel, which allows these adaptationmechanisms
to act simultaneously, can provide a framework for interpreting such
experiments. Here, we have shown the sufficiency of exploration-based
gradient estimation and gradient descent with a fixed learning rate in
predicting diverse adaptation phenomena. Future experiments can
compare thepredictions of gradient descent versus alternative descent
or adaptation algorithms (e.g., gradient descent with momentum39 or
learning rate adaptation9) in long timescale trials that either have gra-
dually time-varying conditions or alternate between different condi-
tions at various switching frequencies. Such prospective experiments
would allow us to characterize the relation between the adaptation
direction in experiment and the model-predicted gradient directions,
thus helping to modify the model to capture a broader range of
experiments. Futurework can also test the generality of our framework
to other motor adaptation tasks41,78,85, including the model’s ability to
explain savings, generalization, interference, non-learning, and other
important phenomena; this application of our model to other motor
tasks will require appropriate modifications to the dynamical model
and the default controller.

Our focus has been on capturing qualitative phenomena and we
did not obtain a quantitative fit by minimizing the error between
model predictions and experiment. Indeed, model simplicity may be a
sound reason to not seek quantitative fits. While we have captured a
wide variety of experimental phenomena from diverse labs, future
work could use a higher dimensional musculoskeletal57 and sensor-
imotor model and test it against other prior experimental data not
considered here61,86–88 in addition to the aforementioned prospective
experiments. In these future studies, we would seek to explain to
additional aspects of the experimentally observed adaptation behavior
(e.g., detailed kinematics, kinetics, energetics).

Model-based predictions of locomotor adaptation, such as
enabled here, have potential applications to improving human-
machine interactions including robotic prostheses and exoskeletons,
making such devices intrinsically more learnable or devising protocols
for accelerating their learning57,87,89. Comparisons of learning in healthy
and impaired human populations54 using our modeling framework
provides ameans of identifying how distinct hypothesizedmodules of
locomotor adaptationmay be affected, potentially informing targeted
rehabilitation.

Methods
In this Methods section, we first describe the mathematical structure
of each component of our modular and hierarchical locomotor
adaptation model (Fig. 1), how the components interact, and how this
framework is applied to each task setting; the human experiments are
described at the end. Human participant research reported herein was
approved by the Ohio State University Institutional Review Board and
all participants provided informed consent.

Stabilizing feedback controller
The mathematical biped model, approximating the human walker, is
controlled on a step-to-step basis by a stabilizing feedback controller.
The biped model and the stabilizing feedback controller16,17,26,31,90 are
described in greater detail later in this Methods section (see also Sup-
plementary Methods). Here, we describe the general structure of the
controller necessary to understand our modeling framework. The
controller is a function that relates the control variables u (e.g., forces
and torques) to the state variables s (positions and velocities). Here,
the state s is a vector with asmany elements as there are state variables

Article https://doi.org/10.1038/s41467-024-53416-w

Nature Communications |         (2024) 15:9498 15

www.nature.com/naturecommunications


(nstate elements) and analogously u is a vector with ncontrol elements.
The control variables have nominal values unominal, sometimes referred
to as a ‘feedforward’ term, which the biped uses in the absence of any
perturbations at steady state. Analogously, the state variables also
have nominal values snominal in the absence of any external perturba-
tions. Then, on step j, the control variables uj are assumed to be related
to the state sj by the linear equation:

uj =unominal +K � ðsj � snominalÞ, ð1Þ

whereK is an ncontrol × nstatematrix of feedback gains. This equation (1)
is equivalent to the simpler linear expression uj = a + K ⋅ sj, which has
fewer parameters because the two vector variables unominal and snominal

in equation (1) are replaced by the one vector variable
a = unominal − K ⋅ snominal. This vector a may be considered the full
‘feedforward component’ of the controller, in that it contains all terms
that do not directly depend on current state. We use the version
including unominal and snominal in equation (1), in order to demonstrate
the learner’s ability to automatically ignore redundant parameters. The
linearity of equation (1) is a simplifying assumption, justified by the
ability of linear controllers to explain human step to step locomotor
control16,17,25,31,90 and its sufficiency for the adaptation phenomena
explained by the framework here. The framework itself does not rely
on this assumption of linearity.

Local reinforcement learning for performance improvement
When faced with a novel situation, the reinforcement learner changes
the parameters of the stabilizing controller to make progress toward a
defined objective, expressed as minimizing a scalar objective function
or performance objective J evaluated over each stride. The learnable
parameters p characterizing the stabilizing controller include unominal,
K, and snominal, i.e. the nominal control and state values as well as the
feedback gains. In this study, we only allow the nominal values
p = [unominal; snominal] to change during learning. This is because there is
a one-to-one mapping between these nominal or feedforward terms
and the overall gait kinematic changes we are trying to predict, so
allowing the nominal values to change gives the model sufficient
flexibility to produce different kinematics.We keep the feedback gains
K fixed, as the primary role of the feedback term is to keep the system
stable despite fast timescale perturbations away from the current gait
pattern. Given the robustness of the controller to substantial
perturbations16,17, this stabilizing role is satisfied by fixed feedback
gains K. Indeed, as assumed, we find that changing them is not
necessary for themajor phenomenadiscussedherein; allowing just the
feedforward term to change3 is sufficient (e.g., Fig. 2a–d). Allowing the
feedback gains K to change may be necessary for even more stability-
challenging perturbations, where the robustness of the default con-
troller no longer is sufficient— such changes to K can be accomplished
with the same framework but would require incorporating the loco-
motor task constraints explicitly into the performance objective (e.g.,
not drifting off a finite treadmill, not falling, traveling a certain dis-
tance), as otherwise the feedback gains may be chosen in a manner
that makes the walker unstable. During learning, we allow the unominal

and snominal to change independently for the left and right steps,
enabling adaptation to asymmetric conditions.

Fixing the overall structure of the controller during learning to
that in equation (1) makes this initial controller structure an inductive
bias for learning; that is, it constrains exploration-based learning both
by providing an initial condition and restricting the space of con-
trollers explored.

On each stride i (every two steps), we denote pi to be the current
best estimate of the controller parameters. We posit that before
encountering a novel condition, the body uses the previously learned
controller for normal walking, which we have characterized using data

from normal walking16,31,90. We term this the ‘default controller’ with
parameters pdefault, so that on the first stride, the parameters are
p1 = pdefault. Given the controller parameters pi on stride i, the rein-
forcement learner chooses the controller parameters for the next
stride pi+1 as the sum of two terms: the old controller parameters from
the previous stride (pi) and a small change along the negative of the
gradient estimate of the performance objective:

pi + 1 =pi � αg ðgiÞ, ð2Þ

where gi is the current gradient estimate on the ith stride (see equation
(7) for how it is estimated) and αg is a scalar learning rate for the
gradient descent. Rather than executing the next stride using this new
pi+1, we posit that the nervous system uses a perturbed version p̂i + 1:

p̂i + 1 =pi+ 1 + νi+ 1 ð3Þ

where νi+1 is an exploratory motor noise term, assumed to be multi-
variate Gaussian noise with standard deviation σ, uncorrelated across
time. We posit that the exploratory noise ν is intentionally generated
by the nervous system, allowing it to estimate the local gradient of the
performance objective J with respect to the parameters p, and more
generally, build a local internal model of the system91,92. This
exploration-based estimation of the gradient is in contrast with other
simulation-based ways of estimating the gradient, for instance,
algorithmic or automatic differentiation, also called
backpropagation24,80. In addition to this exploratory motor noise,
theremay be additional unavoidable sensory andmotor noise that the
nervous system cannot resolve, which we consider later separately93,94.
The proposed reinforcement learning procedure directly updates the
parameters of the control policy via gradient descent, so it may be
considered a variant of policy gradient reinforcement learning, where
the gradient is estimated as below entirely from exploratory steps95.
Because the gradient is updated from limited and noisy data (see
below), it is a stochastic gradient descent on the control policy. We
term this learning ‘local’ because of its reliance on the information
obtained via local exploration in the neighborhood of the controller to
make gradual progress toward the optimum. In this formulation, the
learnable parameters p are changed every stride, so that the effect of
the left and the right step control on the performance objective can be
experienced separately before being incorporated into the parameter
change. This assumption of once-a-stride parameter change is not
essential; the learning framework can be used with continuous phase-
dependent control25,31 with more frequent or continuous updates of
control parameters.

Asymptotic gradient estimate
Estimating the gradient of the performance objective J with respect to
the parameters p is equivalent to building a local linear model relating
changes in parameters p to changes in performance J. This can be
understood by noting that a local linear model is the same as a first-
order Taylor series, and the gradient ∇xf of a function f(x) about x0
appears as the coefficient of the variable x in this first-order Taylor
series as follows:

f ðxÞ = f ðx0Þ+∇xf � ðx � x0Þ+ higher order terms � some constant +∇xf � x:
ð4Þ

The performance J on a given stride will not only depend on the con-
troller parameters p, but the entire system trajectory, which is uniquely
determined by the initial system state and the subsequent control
actions given by p. So, we posit a linear model that includes depen-
dence on both si and pi. On stride i, if the initial state is si, the para-
meters are pi, and the performance over that stride is Ji, a linear model
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relating these quantities is given by:

Ji = Fsi +Gpi +H: ð5Þ

Here, coefficient matrix G is the gradient of the performance Ji on the
current stride with respect to the learning parameters pi and the
coefficient matrix F is the gradient with respect to initial state si.
Building a linear model of Ji with respect to only pi, ignoring the
dependence on state si can lead to incorrect gradient estimates and
unstable learning.

Performing gradient descent using the matrix G as the gradient is
equivalent to reducing the performance of a single stride Ji, without
considering the long-term implications. Minimizing just the single-
stride performance Ji may result in unrealistic optima for some per-
formance objectives: turning off the actuators and falling may be
optimal when only minimizing energy over one step. So, for non-
transient tasks such as steady walking, we hypothesize that the human
prioritizes the long-term or steady state performance J1 = limi!1 Ji.
This asymptotic or long-horizon performance averages over the noise
on any one stride.

To estimate the gradient with respect to long-term performance,
the nervous system needs to be able to predict the future. Thus, to
predict the long-termconsequences of the parameterspi, weposit that
the nervous system maintains an internal forward model of the
dynamics, that is, how the initial state si and the parameters pi for a
stride affects the state at the end of the stride, equal to the initial state
for the next stride si+1. This internal model of the dynamics is also
assumed to be linear for simplicity:

si+ 1 =Asi +Bpi +C: ð6Þ

Given such an internal model of the dynamics, the nervous system can
estimate the future consequences of parameter changes to the steady
state (by effectively simulating the internal model to steady state) and
thus infer the relevant gradient of J∞, given by:

g =∇J1 =G+ FðI � AÞ�1B, ð7Þ

where the first term G gives the gradient of the short-term energy cost
over one step, while the second term corrects for the fact that the
steady state value of s will be different from the current initial state si.
This internal model framework also allows the nervous system to
minimize performance over an intermediate time horizon by comput-
ing and using the gradient of the mean energy cost over the next few
strides.We found thatminimizing expectedperformanceover just one
or two strides into the future can result in unstable learning for energy
optimization. In conventional reinforcement learning95, a discount
factor 0 < γ < 1 is used tomodify the functionminimized to

P1
i = 1 γ

i�1Ji,
which prioritizes near-term performance and down-weights perfor-
mance in the future. We did not use such a discount factor here, but
using γ ≈ 1 is analogous to the asymptotic limit we have chosen, and γ
much less than one will give results similar to optimizing over just the
next few strides.

Weupdate thematricesA,B,C, F,G,Honeach stride by estimating
the linear model via ordinary least squares to best fit the state, the
action, and the performance (si, pi, Ji) over a finite number of previous
steps. We used a rolling estimate over 30 steps for all the results pre-
sented herein. This gradient estimator needs to have the property that
relatively prioritizes recent history91, as otherwise, the gradient des-
cent cannot adapt to novel locomotor situations in a timely manner.
Using a finite history allows rapid adaptation to sudden changes. Also,
we use a linear internal model though the full biped dynamics are
nonlinear; a linear internal model is sufficient when adaptation is
gradual and the model is constantly updated to be a good approx-
imation about the current operating point.

Learning happens as long as the gradient estimate, however
computed, gives a reasonable descent direction on average — that is,
gives direction in which to change the control policy to lower the
performance objective value. Operating on inaccurate gradients can
result in learning instabilities (distinct from instability in the move-
ment dynamics), as can large gradient steps. This learning instability
canbe prevented in twodifferentways. First, when the linearmodels in
equations (5) and (6) are inaccurate, as estimated by their residual
being outside of the 95% confidence interval at steady state, the
learning rate is set to zero. A second approach to avoiding learning
instability is a trust region approach, wherein the maximum gradient-
based step-size is limited to a fraction the exploratory noise.We tested
both approaches and they give qualitatively similar results.

Forming motor memories and employing them when useful
Weposit amodularmemory unit to capture the fact that humans form
and maintain memories of previously learned tasks40, as opposed to
having to re-learn the tasks each time. First, we discuss our model of
how such stored ‘motor memories’ are used, and later in this section,
we discuss how thesemotor memories are formed and updated based
on experience.

Consider that the human had some past experience in the current
task, and used controller parameters pmemory with associated perfor-
mance objective values Jmemory. We posit that humans move toward
this memory with some learning rate as follows:

pi+ 1 =pi +αg ð�giÞ+αmðpmemory � piÞ, ð8Þ

where (pmemory − pi) is the vector direction toward thememory and αm
is the rate atwhichmemory is approached.Weposit that the controller
parameters being learned move toward the memory only when
Jmemory < Jcurrent, that is, when progressing toward the memory
improves the performance. Secondly, to ensure that progress toward
memory does not destroy gradient descent even if Jmemory was inac-
curately approximated, we posit that the learning rate αm ismodulated
via a truncated cosine tuning so that memory is used only when the
direction toward memory does not oppose the direction of the nega-
tive gradient (Fig. 1d). In Supplementary Methods, we elaborate
mathematically on why this modulation of the rate toward memory is
necessary and sufficient to avoid convergence to a sub-optimal
memory.

We conceive of a ‘motor memory’ as a pair of functions Fp(λ) and
FJ(λ) that output the controller parameters pmemory = Fp(λ) and the
corresponding performance objective value Jmemory = FJ(λ) respec-
tively, given the task parameters λ (Fig. 1d). The task parameters λ
could be continuous-valued, for instance, walking speed or assistance
level of an exoskeleton, or discrete-valued41, for instance, treadmill
versus overground walking or presence versus absence of an exoske-
leton. As a simple example, the task parameter could be treadmill belt
speed vbelt, and the stored motor memory functions Fp(vbelt) outputs
controller parameters for each walking speed and FJ(vbelt) outputs the
corresponding performance objective value. In this case, the nervous
system could infer the belt speed vbelt from the sensory stream56, by
fusing proprioception (which can help infer the speed of head relative
to foot, vhead/foot) and vision (which can sense the speed of head rela-
tive to lab, vhead/lab), so that the belt speed is given by: vbelt = vfoot/lab
= vhead/lab− vhead/foot. For simplicity, we assume that this task parameter
inference is independent of any potential perceptual recalibration22,42,
which is addressed separately in a later section on proprioceptive
realignment.

The memory functions Fp and FJ are built over time to approx-
imate the best controllers learned during previous experiences of
similar tasks.Weposit representations ofmotormemories via function
approximation: in this manuscript, for simplicity, the stored controller
parameters pmemory are linear functions of the task parameters unless
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otherwise specified, anchored at a nominal tied-belt condition. Such
interpolating function approximations for memory are in contrast to
discrete memories of experiences without interpolation2: these two
assumptions have different testable implications for generalization of
learning. The memory functions Fp and FJ have memory parameters μ,
which determine the function approximation, for instance, the slope
and intercept of a linear functions FP(λ, μ): here, we allow the slopes of
the linear function to change to approximate new experiences, while
keeping the intercept at a nominal tied belt walking speed fixed.
Analogous to our previous hypothesis that the controller parameters
are updated via gradient descent, we posit that these memory para-
meters are also updated via gradient descent, so that the memory
function better approximates controller parameters to be stored. That
is, we posit that the nervous system performs: μi+1 = μi − αmf∇μL, where
L is a measure of how well the memory approximates the current
controller pi and αmf is the learning rate for memory formation; we
used the rootmean squared error over all controller parameters being
approximated. This memory update happens when the current con-
troller pi is better than what is already stored in the memory i.e., when
Jcurrent < Jmemory or when the direction toward the memory is not a
descent direction (Fig. 1d). This makes memory formation and mem-
ory use mutually exclusive.

Minimal walking biped: dynamics, control, energy, and
performance
Dynamics. We consider a minimal model of bipedal walking (Supple-
mentaryFig. 1a), consistingof a point-massupper body and simple legs
that can change length and apply forces on the upper body26,55. The
total metabolic energy cost of walking for this biped is defined as a
weighted sum of the positive and negative work done by the stance
legs on the upper body and the work done to swing the legs
forward55,96. For this biped, the periodic energy-optimal walk on solid
ground is the inverted pendulum walking gait26,55,97, in which the body
vaults over the foot in a circular arc on each step (Supplementary
Fig. 1b), with the transition from one step to the next achieved via
push-off by the trailing leg, followed by a heel-strike at the leading leg
(Supplementary Fig. 1c). We use this irreducibly minimal low-
dimensional biped model26,55 to illustrate the predictive ability of our
modeling framework for simplicity and transparency. Further, we
show that the simple model is sufficient for explaining the major
documented locomotor adaptation phenomena in the literature. The
locomotor adaptation modeling framework herein can be generalized
to a more complex multibody multimuscle model of a human. The
parameters of this biped model were not fit to any data from the
adaptation phenomena we seek to explain (see Supplementary Meth-
ods). When showing metabolic energy cost transients for the model,
we show two versions (e.g., in Fig. 2a), one that reflects average
metabolic rate over each stride and one that would be measured via
indirect calorimetry, which is a low-pass filtered version of the stride-
wise cost98.

Stabilizing feedback control. The biped has two control variables for
each leg, namely, step length and push-off magnitude (Supplementary
Fig. 1d), for a total of four discrete control actions per stride. These
control variables are modulated to keep the biped stable, despite
external or internal noisy perturbations and despite a change in the
mechanical environment e.g., walking on a split-belt treadmill or with
an exoskeleton. The controller keeps the biped stable despite large
changes in the body and environment, including external perturba-
tions; this ability to be unaffected by unforeseen changes before any
changes to the controller parameters is called robustness, so that the
controller is termed ‘robust’16,17,99. The values of these control variables
on each step are decided by a discrete controller, as described below,
derived from our prior human experiments on steady walking16,17,31

without specifically fitting any parameters to the data from the

adaptation experiments we seek to explain. The body state si at mid-
stance at step i includes the forward position in the lab frame, the
forward velocity in the belt and the lab frame, and the running sum
(i.e., discrete integral) of the forward position in the lab frame. The
control variables ui at step i are changed by the following linear control
rule as a function of the preceding midstance state si:
ui = unominal + K ⋅ (si − snominal), where K is a matrix of feedback gains16,31.
The velocity dependence of the control gains ensures that the walker
doesn’t fall, the position dependence promotes station-keeping17,31,
and integral dependence reduces error due to systematic changes in
the environment, for instance, changing the treadmill belt speeds or
going froma tied to a split treadmill. These termsmake the controller a
discrete PID controller (proportional-integral-derivative). The nominal
periodic motion at each speed is governed by the feedforward push-
off and step length values, and these are selected so as to have the
same speeds and step lengths as a typical human (Supplementary
Fig. 2). The default values for the control gain matrix K are then
obtained by fitting the dynamics of themodel biped to the step to step
map of normal human walking on a treadmill16,17,31,90. Mathematical
details and parameter values are provided in the Supplementary
Methods. All variables in equations and figures are non-dimensional,
unless otherwise mentioned: lengths normalized by leg length ℓ,
masses normalized by total bodymass, and time normalized by

ffiffiffiffiffiffiffiffi
‘=g

p
,

where g is acceleration due to gravity55.

Different locomotor task settings. The biped model described above
is expressive enough to capture thedifferent task settings forwhichwe
seek to model adaptation: walking with different exoskeleton assis-
tance protocols, at varying belt speeds (tied or split-belt), and with
asymmetric leg masses. Here, we briefly describe how the different
conditions are simulated by changing the external environment and
force it exerts on the biped. See Supplementary Methods for mathe-
matical details. The model described above allows the individual
treadmill belt speeds to be changed as a function of time (Fig. 2a,c).
This generality is sufficient to simulate both split-belt and tied-belt
treadmill walking conditions. The total metabolic cost computed
accounts for individual belt-speed changes because all components of
the metabolic cost, namely, push-off work, the heel-strike work, and
the leg swing cost are computed by incorporating the relevant belt-
speeds and effective leg masses. For split-belt walking protocols, we
usually use non-dimensional belt speeds of 0.5 for the fast belt and
0.25 or 0.3 for the slow belt formany but not all computational results
(Figs. 2a, 4–8): these walking speeds and their durations may be dif-
ferent from precise experimental conditions but the qualitative fea-
tures we illustrate are insensitive to such differences in speeds chosen.
We simulated exoskeletons as external devices in parallel to the leg
that produces forward forces, or equivalently, ankle torques (Figs. 2d
and 4e). Walking with periodic exoskeleton input used the perturba-
tion as an additional input state in the controller. For predicting
adaptation to footmass change (Fig. 2b), we incorporated the simplest
leg swing dynamics: a point-mass foot, propelled forward with an
initial impulse and the foot mass coasting forward passively until heel-
strike. For the tied-belt walking, we used the belt speed as the task
parameter; for split-belt studies, we used the individual belt speeds as
the task parameters; for the added leg mass study, we used the added
leg mass as the task parameter. To track gait asymmetry, we use the
following two objectives of left-right asymmetry4, namely step length
asymmetry and step time asymmetry, defined as follows:

step length asymmetry =
Dfast � Dslow

Dfast +Dslow
and step time asymmetry =

T fast � T slow

T fast +Tslow
,

ð9Þ

where the fast and the slow step lengths (Dfast andDslow) are defined at
heel strike as in Supplementary Fig. 1e and the step times Tfast and Tslow
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are the stance times when on the fast and slow belts respectively. We
use analogous measure of asymmetry when the biped walks with an
asymmetric foot mass, but different from that used in the experi-
mental study on foot mass adaptation5. There can be other ways of
quantifying asymmetry and we chose asymmetry objectives that are
commonly used to empirically track adaptation4,5,45. A zero value
indicates symmetrywith respect to thesemeasures, but does not imply
perfect left-right symmetry of the entire motion.

All computational work was performed in MATLAB (version
2022a). See Supplementary Methods and our codebase implementing
these simulations, LocAd30, shared via a public repository. Digitized
data from prior manuscripts5,6,8,18,20,28,36,45,48,52,100 are plotted in Figs.
2 and 7b and Supplementary Figs. 2, 5, 6, as cited in place, simply to
illustrate whether model-based predictions agree qualitatively with
experimental results in prior studies.

Alternative to performance optimization: Comparison with
proprioceptive realignment
Experimental evidence during split-belt adaptation suggests some
recalibration of proprioception by the two legs42 and has been argued
to be at least partially responsible for kinematic adaptation22,42 based
on the correlation of timescales between such realignment and adap-
tation. No mathematical model been previously proposed for how
such realignment may happen. Without such a mathematical model, it
is impossible to know whether the direction of adaptation due to such
realignment will be consistent with or opposing that observed in the
experiment. Here, we first present such a mathematical model and
then test the extent to which it explains adaptation on a split-belt
treadmill. We implement this proprioceptive realignment as a gra-
dual sensory recalibration of the input to the stabilizing controller,
replacing the gradient-based reinforcement learner (Fig. 9a–b).

Recalibration takes place when there is substantial conflict
between what is expected by the nervous system and what is sensed11.
The key missing hypothesis in extending such sensory recalibration to
locomotor adaptation lies in the question: what error is the nervous
system using to drive recalibration during locomotion? We hypothe-
size that, given the typical walking experience in daily life, the nervous
system expects the two legs to be on a common surface: this expec-
tation results in a sensory conflict on a split-belt treadmill with both
feet experiencing unequal belt speeds.

When the walking surface has fixed speed and the visual envir-
onment is uniform, thewalking speed canbe estimated by the nervous
system by two sensory modalities56: vision (based on visual flow) and
proprioception (by integrating joint angles and angle rates from
muscle spindles and Golgi tendon organs). On a treadmill in a lab,
vision has information about how the head moves with respect to the
lab, so we identify the visual speed with vbody/lab. Proprioception has
information about how fast the body parts move relative to the stance
foot on the belt, sowe identify proprioceptionwith vbody/belt. Thus, the
body has information to implicitly estimate the belt speed via the
following equation: vbelt/lab = vbody/lab − vbody/belt. On a split-belt
treadmill, all these speeds will be belt-specific, e.g., vbelt,1/lab and
vbelt,2/lab. The expectation thatboth legs contact a common surface can
be expressed as the equality of these individual belt speeds: vbelt,1/lab
= vbelt,2/lab. We posit that deviations from this equality result in slow
recalibration. Consistent with much of the arm reaching literature, we
recalibrate only the proprioceptive sense, hence the term proprio-
ceptive realignment.

Say, �vbody=belt, 1 and �vbody=belt, 2 are the proprioceptively obtained
sensory information from the two legs without recalibration, and
v̂body=belt, 1 and v̂body=belt, 2 are the recalibrated versions. The two ver-
sions are related by:

v̂body=belt, 1 = �vbody=belt, 1 � Δv1 and v̂body=belt, 2 = �vbody=belt, 2 � Δv2, ð10Þ

where Δv1 and Δv2 are the recalibrative corrections. We describe this
recalibration as happening via a state observer with two timescales: a
fast timescale process estimating a common belt speed v̂common using
proprioceptive information from both legs and a slow timescale pro-
cess estimating the recalibrative corrections Δv1 and Δv2 for each leg
separately. The commonbelt speed estimate is updated every step j via
a state observer as follows:

v̂commonð j + 1Þ= v̂commonð jÞ+acommon �vbody=lab ð jÞ � �vbody=belt,k ð jÞ � v̂commonð jÞ
� �

ð11Þ
where k equals 1 or 2 for odd and even step number given by j,
respectively, and acommon is a rate constant proportional to the time
spent on each step – but we treat as constant for simplicity. This
equation results in convergence of v̂common to the average belt speed.
The recalibration Δvk is the current estimated perturbation of the
individual belt speed from the estimated common speed v̂common.
This recalibration is updated on every stride i as:
Δvkði+ 1Þ=ΔvkðiÞ+aΔð�vbody=lab � �vbelt, k=lab � v̂common � ΔvkðiÞÞ. Here,
the rate constantaΔ ismuch smaller thanacommon, reflecting the slower
timescale atwhich the perturbation estimateΔv̂k is updated.Here, v̂1 is
updated on odd steps and v̂2 is updated on even steps. This pertur-
bation estimate Δvk eventually converges to the deviation of the actual
belt speed from the common speed. These state observer equations
for recalibration are similar to estimating the belt speed via a state
estimator reflecting an expectation that tied-belt changes are much
more likely than split-belt changes, modeled by the noise covariance
matrix for belt speed changes having large diagonal elements
(governing co-variation of belt speeds) and small off-diagonal
elements (governing belt speed differences). Further, while we have
introduced the latent variables vcommon and Δvk in the above
description, the recalibration equations can be written without such
latent variables. The recalibrated proprioceptive information
(v̂body=belt, 1 and v̂body=belt, 2) is used in the stabilizing controller instead
of thedirect proprioception. In theResults,we showeffects of 50% and
100% recalibration: 100% corresponds to using the full correction Δvk
and 50% uses 0.5Δvk in the recalibration equation (10).

Alternative to energy minimization: Comparison with reducing
kinematic task error
Minimizing kinematic task error first requires defining what the
desired or expected kinematics are. To define this, we first note that
slow timescale error minimization is not thought to underlie tied-belt
walking adaptation, or at least the timescales of adaptation to tied-belt
speed changes are much faster than for split-belt adaptation28. So, we
posit that the nervous system treats tied-belt walking — or walking on
the same surface with both legs— as the normal state of affairs, basing
the desired kinematics on an implicit assumption of tied-belt walking.
The nervous system estimates the common belt speed v̂common as in
the previous section, using visual flow and proprioception from both
legs (see eq. (11) and Fig. 8b). This common belt speed v̂common is then
used to make a prediction for the body midstance state ŝcommon based
on memory, which is compared with actual sensory information �s to
compute the task error E = ŝcommon � �s.

In simple tasks such as arm reaching, where both the error and the
action is one-dimensional, it is possible to reduce error via a simple
‘error-based learning model’ with a single or dual rate process46 or via
learning rate adaptation9. However, in tasks such as walking in a novel
environment, because body state and the number of actuators is high-
dimensional, the nervous system may not have a priori inverse model
to produce the motor actions that reduce the error. So, a simple one-
dimensional error-based learningmodel is not appropriate.We instead
model the error reduction as proceeding analogous to energy reduc-
tion via gradient descent using exploratory variability to estimate
gradients, as a special case of the framework in Fig. 1. The kinematic
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task error being minimized may also be considered a kind of sensory
prediction error, as the error from the kinematic state predicted or
expected by the nervous system given the belt speed estimate.

Interaction with explicit control
The mechanisms proposed herein are for implicit adaptation, but
these mechanisms allow for explicit (conscious) control acting in
parallel to implicit adaptation. We show how our model can be
extended to interact with explicit input by implementing an visually-
informed explicit control module for the reduction of step length
asymmetry10. On each step, the explicit control module outputs a
correction to the desired step length proportional to the step length
asymmetry on the previous stride, with the intention of reducing the
step length asymmetry on the current step. This output from the
explicit control module is added to the desired step length output
from the implicit adaptation module (the default adaptation
mechanisms here), so that the net total control input is used by the
stabilizing controller. The additive and parallel nature of the implicit
and explicit modules are as proposed for explicit control in arm
reaching studies23. The architecture of the proposed interaction
between the implicit adaptation and explicit control is such that the
implicit module is only aware of its own output and not that of the
explicitmodule; thus, the implicitmodule optimizes the objectivewith
respect to its own output.

Prospective experiments
The computational model we put forth here can be used to design
prospective experiments, augmenting experimenter intuition. Here,
we conducted two model-guided experiments to test predictions of
themodel that are surprisingwhen compared to the existing literature:
(1) on the effect of environment noise on locomotor adaptation, and
(2) on the effect of an immediately preceding counter-perturbation on
a subsequent adaptation.

Twenty-five participants (19 male, 6 female, self-reported sex, age
21.9 ± 3 years,mean ± s.d.) participatedwith informedconsent and the
experiments were approved by the Ohio State University IRB. Partici-
pants were assigned randomly into two groups: sixteen participants
performed experiment 1 (12male, 4 female, age 21.7 ± 3 years) andnine
participants (6 male, 3 female, age 22.3 ± 3 years) performed experi-
ment 2. Both experiments involved walking on a split-belt treadmill
(Bertec Inc.), with the details of the protocol provided below. Foot
movement was tracked via a Vicon T20motion capture system (Vicon
Nexus 1.x). Sex or age was not used as an explanatory variable in any
analysis, as the computational model tested does not include such
variables.

Experiment 1 was designed to test themodel prediction thatwhen
the belt noise level was sufficiently high, learning can be degraded,
which is surprising relative to a prior finding that amodest level of belt
noise can slightly enhance learning as measured by after-effects20. For
this experiment, the participants were sub-divided into two groups of
eight: one group performed a no-noise abrupt protocol (Fig. 7a), in
which participants started walking under tied-belt conditions at
0.9 m/s, then adapted to split-belt condition of 0.6 m/s and 1.2 m/s
kept constant for 10 minutes, followed by three minutes of tied-belt
walking at 0.6 m/s; the second group had an identical protocol except
the split-belt condition involved continuously changing belt speed for
just the fast belt, fluctuating in a piecewise linear manner with zero
mean and 0.2 m/s standard deviation (normally distributed). The
consecutive grid points of the piecewise linearnoisewere separatedby
1.2 seconds, roughly equal to a stride period, so that the noise value
was different two strides apart (the noise in20 was changed every
3 seconds, and thus had greater temporal correlation); speed changes
had 0.1-0.2m/s2 accelerations. The noise standard deviation was set at
a lower level in simulation (0.04 m/s) to ensure stability. The post-
adaptation after-effect in step length asymmetry after baseline

subtraction, averaged over the first 8 strides (about 10 seconds) was
used as a measure of adaptation similar to prior work20. We compared
these after-effects between the noise and no-noise case, testing the
hypothesis that the noise case can have lower after-effects.

Experiment 2was designed to test themodel prediction regarding
savings, specifically whether experiencing a counter perturbation B
beforehand, interferes with adaptation to perturbation A. Previous
experiment52 had found that if B and A were separated by a washout
period, the adaptation to A was not significantly affected compared to
not having experienced B. Our model had a distinct prediction for
when A immediately followed B, without a washout period W. So,
participants performed this experimental protocol T-B-A (Fig. 6) in
which4minutes ofwalkingon a tied-belt at 0.9m/s (T)was followedby
a split-belt condition with belt speeds of 0.6 and 1.2m/s for 10minutes
(B), immediately followed by the opposite split-belt condition 1.2 and
0.6m/s for 10minutes (A). Equivalent to comparing the A of protocols
T-A and T-B-A by bilateral symmetry, we compared the initial transient
and the time-constant of the two adaptation periods B and A in T-B-A:
the B of T-B-A was without prior split-belt experience and the A of T-B-
A is the adaptation phase just after a counter-perturbation.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The experimental data generated in this study have been deposited in
the Dryad database101 with https://doi.org/10.5061/dryad.kh18932gq.
Other human experimental data or results referred to herein are
available in previously published manuscripts5,6,8,18,20,28,36,45,48,52,53,100.

Code availability
Code associated with this paper, LocAd30, is available at: https://doi.
org/10.5281/zenodo.13887633, which links to a public Github
repository.
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Supplementary Figure 1. Biped model and controller. a) A minimal biped model with a point-mass upper body, b) using
an inverted pendulum walking gait, c) with step to step transitions mediated by impulsive push-offs and heel-strikes1, 2. d) The
push-off and step lengths on every step are controlled via state feedback on center of mass state, so that moving faster than
desired or being behind the desired position results in a larger push-off and a smaller step length3–5. e) The step length
asymmetry is computed based on step lengths Dfast and Dslow (distance between the feet) measured at the time of heel-strike
onto the fast or slow belt in the case of split-belt walking. For walking with an asymmetric foot mass, an analogous step length
asymmetry is computed by using step lengths Dheavy and Dnormal onto the heavier foot and the normal foot respectively.
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Supplementary Figure 2. Steady state walking characteristics. At each steady walking speed, humans use a stereotypical
step length — or equivalently, step frequency and step time, derivable from speed and step length6, 7. One parameter of the
biped model (scaling of swing cost) is chosen such that the optimal gait captures how the steady step length, step frequency,
and step time change with speed in human data6, 7.
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Supplementary Figure 3. Step length vs step time asymmetries. For walking on a split-belt treadmill, the energy
landscape has optimum at positive step length asymmetry and positive step time asymmetry. The curvature and thus the slopes
are higher along the step time asymmetry than the step length asymmetry directions, thus predicting that gradient descent-based
learning will converge faster in step time asymmetry rather than step length asymmetry. Further, the relative flatness of the
optimum along step length asymmetry compared to along step time asymmetry means the behavior can be further from the
optimum along step length asymmetry direction for a given energy penalty. So, if the learning does not converge fully, we
expect it to be further away from the optimum along the step length asymmetry compared to step time asymmetry. Finally, note
that a given step length or step time asymmetry can be chosen in infinitely many ways, for instance, with different total or
average step lengths; so this would need to be a higher dimensional plot to get a better characterization of the energy landscape.
We have shown two slices of this higher dimensional cost landscape to compare the curvatures along two directions in the units
chosen; the slices are chosen through the optimum, with the other free variables chosen to be their optimal value given the
appropriate step length or step time asymmetry value.
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Supplementary Figure 4. State-dependent exoskeleton assistance. a) Forward assistive torques are applied by the
exoskeleton starting at fixed leg angles, with the torque being angle dependent. This makes the assistance periodic in gait phase
defined based on leg angle. b) The reinforcement learner learns to take advantage of the assistive pulls by changing the step
timing slightly, with the transient being due to both the stabilizing feedback controller and the reinforcement learner. Period
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Supplementary Figure 5. Generalization to neighboring tasks and size dependence of transients. a) Learning a new
task generalizes to neighboring tasks. Learning a larger split A and then learning a smaller split B with tied-belt washout W in
between (protocol A-W-B) results in a faster learning transient for task B rather than learning B directly (protocol B), as seen in
experiments8. Light blue shaded regions indicate adaptation regions for whom behaviors are compared. b) Learning a larger
split A and then learning a smaller split B, with a tied-belt washout W in between (protocol A-W-B) can result in faster
re-learning transient for B than learning B first and then re-learning B with a washout in between (protocol B-W-B), as in
experiments8. These phenomena are due to the interpolative function approximation properties of the memory and constitute
savings from experience with neighboring tasks. c) The model is able to capture, qualitatively, how the initial transient and the
eventual steady state change based on the size of the belt-speed splits8.
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c) Second adaptation: Model predicts that the “gradual” protocol is the worst at savings as in data  

b) First adaptation: Model predict qualitative differences between abrupt and gradual protocols as in data
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Supplementary Figure 6. Protocols with abrupt, gradual, and extended adaptation regimes. a) We simulated the
different adaptation protocols consisting of gradual and abrupt introduction of a split-belt condition, different extents of the
adaptation regime, and gradual versus abrupt ending to the adaptation regime, analogous to those considered by Roemmich and
Bastian9. Different speed change protocols have different color shadings, and the behavior in panels b and c use the same
colors. b) During first adaptation, the protocols that begin with abrupt change in belt speeds showed qualitatively different
transients compared to the protocols with gradual changes in belt speeds: specifically, the abrupt adaptation phases had an
initial negative step length asymmetry that slowly became less negative; the gradual adaptation phases had an initial zero step
length asymmetry that slowly became more negative. These qualitative differences in experimental data were predicted by the
model for appropriate model parameters. c) The model predicts that the second adaptation of every other protocol will have a
smaller initial transient and more savings than ‘gradual’ protocol, as is qualitatively seen in the experimental data. Further, the
longer duration abrupt first adaptation resulted in a smaller initial transient during second adaptation compared to a short abrupt
protocol, both in the model and data. In this manuscript, we have commented mainly on qualitative results that are robust to
model and protocol parameter choice and have not attempted quantitative fits. However, some other results — such as the
relative ordering of savings between ‘abrupt’ and ‘extended gradual’ in this figure – are dependent on details of the model or
experiment. One can change this ordering either by changing model parameters, or by changing the ‘extended’ duration of the
‘extended gradual’ protocol. Such sensitivity to experimental parameters is a falsifiable prediction that can be tested by further
experiment.
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Delay between input x and objective f(x) can degrade or stop gradient descent learning
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Supplementary Figure 7. Delay degrades or stops adaptation. Exploration-based gradient descent to optimize an
objective function f (x) with and without delay. Blue shaded region is when the optimization process is turned on. a) Without
delay between x and f (x), the gradient is estimated reliably and gradient descent proceeds to reduce the function value. Twenty
different optimizations are shown from the same initial condition, and same levels of exploratory and sensory noise levels. b)
With a delay of one step between the input x and function values f (x), learning via gradient descent is completely stopped in
some trials and is severely degraded in other trials. See Supplementary Methods. This delay-based degradation of learning is
largely independent of the nominal energy gradients.
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Figure Quantities compared t(df) p Cohen’s d Paired Tailed Non-
parametric
p

Normality

5 Model: time constants of
first and second adaptation

21.8(9) < 0.001 9.62 (5.95, 16.18) yes yes 0.002 yes

6a Model: initial transient in A
in TATATA vs TATBTA

0.244(18) 0.810 0.104 (-0.74, 0.94) no no 0.678 yes

6a Model: early change in A in
TATATA vs TATBTA

-0.114(15) 0.911 -0.049 (-0.89, 0.79) no no 0.910 yes

6b Model: rate constant of B
and A in TBA

-1.42(7) 0.200 0.066 (-0.21, 0.048) yes no 0.250 yes

6b Experiment: rate constant of
B and A in TBA

-0.363(8) 0.726 -0.11 (-0.70, 0.49) yes no 1 yes

6b Model: initial transient of B
and A in TBA

-37.4(7) < 0.001 -18.1 (-32.9, -10.6) yes no 0.008 yes

6b Experiment: initial transient
of B and A in TBA

-3.36(8) 0.005 -0.98 (-2.10, -0.25) yes no 0.006 yes

7a Model: after-effect noisy and
no noise

2.86(11) 0.0154 1.13 (0.28, 1.96) no no 0.001 yes

7a Experiment: after-effect
noisy and no noise

-2.41(14) 0.0151 -1.14 (-2.14,-0.11) no no 0.0249 yes

7b Model: gradual no-noise and
gradual noisy

3.59(12) 0.0035 1.42 (0.53, 2.28) no no 0.0051 yes

7b Model: gradual no-noise and
abrupt no noise

11.9(22) < 0.001 4.68 (3.09, 6.24) no no < 0.001 yes

7b Model: gradual noisy and
abrupt no noise

0.16(12) 0.875 .063 (-0.71, 0.84) no no 0.371 yes

Supplementary Table 1. Details of statistical comparisons. Column 1 refers to the figure number in the main manuscript,
in which the corresponding data are plotted. Details reported in columns 3, 4, 6, and 7 are for t-tests: t(df) indicates the t
statistic, with the number of degrees of freedom for the t test in parenthesis; p refers to the p value for the t-test. Tailed t-tests
are always in the direction of difference predicted by the model. Normality of samples was tested and we found that the null
hypothesis of normality was not rejected at the 5% level for any of the samples. In addition to t-tests, p value for
non-parametric tests that do not rely on normality are provided. In every occurrence, the non-parametric test agreed with the
t-test at the 0.05 significance level. See Supplementary Methods for more details.

Supplementary Methods

Biped model, feedback controller, learning, and parameters
We now provide further mathematical details for the biped model10, controllers, and learning.

Equations of motion. When the foot is fixed in an inertial frame, the inverted pendulum phase of inverted pendulum walking
(Supplementary Figure 1a-b) has the following equations of motion:

m`2
θ̈ +mg`sinθ = τ, (1)

where θ is the stance leg angle from the vertical, g is the acceleration due to gravity, ` is the leg length, m is the point mass
body, and τ is an ankle torque; clockwise and rightward are positive. These equations apply whether the inverted pendulum
walking happens overground or on a treadmill, as long as the treadmill belt holds constant speed. A purely forward force
F on the center of mass, such as from an external device or the inertial forces from belt acceleration, is achieved by having
τ = F`cosθ . Thus, when the belt is accelerating forward with acceleration abelt, the equation of motion is:

m`2
θ̈ +mg`sinθ =−mabelt `cosθ . (2)
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Push-off and heel-strike. During the step to step transition (Supplementary Figure 1b-c), push-off happens first. The leg
direction n̂ is initially perpendicular to the body velocity v̄ with respect to the current stance belt just before push-off. During
push-off, if the push-off impulse is positive, the velocity is such that n̂ · v̄≥ 0, so that push-off only does positive work. If the
push-off impulse magnitude is Ipush−off, the post-push-off velocity in the push-off belt frame is v̄+∆v̄ = v̄+ Ipush−off n̂/m. The
positive work performed by the leg is equal to the kinetic energy change in the push-off belt frame, which is also equal to
m(∆v)2/2, because of pythagorean theorem11. This quantity is equal to the work performed by a telescoping leg.

The analysis of heel-strike is the reverse of push-off. After heel-strike, the body velocity is again perpendicular to the
new stance leg, now on the heel-strike belt. If the body velocity just before heel-strike in the heel-strike belt frame is v̄ and the
heel-strike leg direction is now n̂, the post-heel-strike velocity in the heel-strike belt frame is v̄+∆v̄ = v̄− (v̄ · n̂)n̂. Here, the
second term (v̄ · n̂)n̂ is the component of pre-heel-strike velocity along the heel-strike leg, which is entirely lost upon heel-strike.
The leg only performs negative work during such a heel-strike. The value of this negative work equals the change in kinetic
energy across the heel-strike, computed in the frame of the belt onto which heel-strike happens, given by: −m(v̄ · n̂)2/2.

Metabolic energy cost. The metabolic energy cost Estep for each step is a sum of two terms, a stance leg cost Estance and a
leg swing cost Eswing. That is,

Estep = Estance +Eswing. (3)

The stance leg cost captures the metabolic cost of the mechanical effort during stance, and we set it equal to

Estance = bposWpos +bneg|Wneg|, (4)

where Wpos and Wneg are, respectively, the push-off positive work and the heel-strike negative work, and bpos = 4 and bneg = 0.83
are reciprocals of the positive and negative work efficiencies1, 12, 13. For the leg swing cost, we initially considered two versions
of the model: (1) a work-based swing cost, based on the mechanical work needed to move a point foot by a given distance in
a given amount of time, starting and ending at the respective belt speeds; this cost used the same weighting of positive and
negative work as for the stance cost10, 11, 13, 14; (2) an empirical swing cost due to Doke and Kuo15 where the cost scales with
the typical force rates required for the point-mass to traverse a given distance in a given time11, 13, 15. We confirmed that the
qualitative step length asymmetry adaptation behavior for the split-belt adaptation was similar for the two swing costs, and then
for the rest of the manuscript, used the latter force-rate-related cost given by the following equation:

Eswing = cswing

∣∣∣∣∆v
∆t

∣∣∣∣ · 1
∆t

, (5)

where ∆t is with the swing duration and ∆v is the change in the foot speed from stance (when the foot moves with the belt) to
swing (when the foot moves with speed needed to cover the distance between the foot placements within the swing duration).
The multiplier for the swing cost cswing = 0.9 was chosen to approximate the speed-step-length relationship in normal walking
(Supplementary Figure 2).

The metabolic rate over a stride (two steps) is the metabolic cost divided by the stride time. For purely visualization
purposes, from this stride-wise metabolic rate Ėstride, we predict what would be measured via indirect calorimetry ĖVO2,
obtained by filtering the stride-wise metabolic rate with a first order linear process with a time-constant of 42 seconds (as
in16, 17). That is,

ĖVO2 = λ · (Ėstride− ĖVO2) (6)

where λ is the reciprocal of the time constant. Such predicted metabolic equivalents of indirect calorimetry is denoted as
measured by VO2 in Fig. 2 in the main manuscript.

Feedback controller. The inverted pendulum walker has only two control variables for each step (Supplementary Figure 1d):
the push-off impulse I and the step length d, so that the control variable u = [I;d]. These two control variables are modulated
based on deviations in body state to keep the biped stable. The feedback controller is of the form: u = unominal +K(s− snominal)
or equivalently u = a+Ks, with a = unominal−Ksnominal, where s is the relevant body state and K is a matrix of feedback
gains. The state s is composed of four variables: the body velocity in the belt frame, body velocity in the lab frame, the body
position in the lab frame, and the sum of past body positions in lab frame, all at midstance, that is when the body is over
the foot (θ = 0). This controller has the structure of a discrete PID control, with feedback on position (proportional term),
velocity (derivative term), and sum of positions (integral term). The feedback on the body position and the sum of past body
positions help with station-keeping on the treadmill, that is, not drift off the treadmill. We use the discrete sum instead of
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the integral because the control is discrete and once-per step, rather than continuous. The parameters unominal, K, and snominal
for the default controller are obtained from steady walking data, so as to approximate the step to step maps, as in3–5. This
fit has one additional input from those in3, 4 and uses slightly different relative weighting for matching the step to step map
– but the differences are unimportant for the qualitative results herein. The specific gain parameters are in Supplementary Table 2.

By default, we use the state at mid-stance to select the next push-off and step length, because in most simulations here,
there is no additional perturbation between midstance and heelstrike3–5. Just for the case where there are impulsive exoskeletal
input, instead of basing the control on the mid-stance state, we allow the target push-off and step length on the next step to be
continuously updated through the stance phase until the leg angle corresponds to the proposed step length. This continuous
updating of the proposed control is performed so as to account for any additional perturbations between mid-stance and heel-
strike. We perform this continuous updating so as to exactly conserve the overall step-to-step dynamics of the mid-stance based
control: specifically, we continuously update the control based on the current angular velocity by computing the corresponding
previous mid-stance angular velocity and then using the mid-stance-based controller to decide the next push-off and step length.

Leg swing dynamics. In the aforementioned model description, the swing legs had no explicit dynamics coupled to the rest
of the body, but were directly controlled by the feedback controller by specifying the next foot placement. This is a simple
modeling choice with a rich tradition of explaining a variety of locomotor phenomena11, 14, 18. Despite the lack of explicit
leg-swing dynamics, the model has a leg swing cost that is computed from the distance and duration between foot placements,
as mentioned in the previous paragraph on metabolic cost.

Simulating the addition of asymmetric foot mass requires explicit leg swing dynamics and control, so the dynamics have an
additional degree of freedom in this case. For this situation, we use a minimal dynamical model of leg swing in which the leg
swing is initiated by a hip impulse and then coasts passively until heel-strike, as suggested by classic leg swing EMG data18, 19.
This impulse is an additional control variable and the initial leg swing state is an additional state variable. The controller is
chosen, as earlier, such that the model has the closest return map to the empirical human step to step dynamics at steady state. In
this case, the detailed feedback gain parameters are different from that in Table 2 but the overall controlled locomotor dynamics
are approximately the same by construction, so the controller is considered effectively the same. Because the belt speed is
fixed here, it is not essential to use controller gains for speed relative to the belt frame and the lab frame. Here, the swing leg
dynamics are coupled to the center of mass only through the foot placement20 and thus the nominal gait for this biped with leg
swing is identical to the pure inverted pendulum walking gait considered earlier without leg swing dynamics.

Walking with exoskeleton torques. All exoskeleton simulations used the inverted pendulum walking model as described
above. For all the exoskeleton calculations considered here, the treadmill belt speed is fixed, so separated controller gains for
speed relative to the belt frame and the lab frame Table 2 was not needed, but just the sum of their gains assigned to the speed
relative to the belt is sufficient.

We conceived the exoskeleton as providing a torque about the foot, which — for this simple model — can help simulate
forward pulls, slopes, ankle torques, and hip torques. We performed three types of exoskeleton simulations. First, we simulated
walking with time-periodic torques21, 22, which simply used the equation 1 with the relevant torques; the torques used were zero
everywhere, except for brief periods when the torque rose and fell linearly, resulting in a torque impulse (Figure 2D in the main
manuscript). In this case, it is useful to the learner to include the relative perturbation timing from the exoskeleton as a sensed
input state in addition to the biped state.

Second, we simulated walking with the torque impulse applied at specific leg angles, thereby making the exoskeleton
assistance phase-periodic (Supplementary Fig. 4). This was achieved by starting the torque impulse at the desired leg angle via
event detection in MATLAB.

Finally, we simulated the exoskeleton with assistance depending on step frequency23–25. In this case, the exoskeleton torque
was constant over a step, and this constant was a function of the step frequency over the previous two steps. This simulation
also involved a period where the walker’s step frequency is constrained by a metronome, with the prescribed frequency
changing providing the walker broad experience on the energy landscape. We simulated this metronome-constrained walking by
pre-computing the walking gait at different frequencies and interpolating between them when a particular metronome frequency
is commanded; see figure 4 of the main manuscript to see that this approach was satisfactory.

Parameters. The physical and metabolic parameters of the biped, as well as the parameters of the feedback controller were
chosen independently of the adaptation experiments. Instead, they were fixed by using calculations from prior studies on
the human walking steady state (Supplementary Figure 2)3–5, 18. Aside from these parameters, the reinforcement learner has
two parameters, the gradient descent learning rate αg and the finite memory size Ng used by the gradient estimator. The
memory mechanism has two parameters: a learning rate for moving toward the memory αm and a learning rate for updating the
memory αmf toward the current controller. Unless otherwise stated, we usually used the following values for these parameters:
αg = 1.2×10−4, Ng = 30, αm = 0.01, and αmf = 0.03, all in non-dimensional terms. These values were not tuned based on
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adaptation data, but instead were selected to simply demonstrate that the model predicts the many qualitative phenomena
illustrated in the main manuscript figures 2, 4, 5, 6, and 7and Supplementary Figure 9). We confirmed that each of these
parameters can generally be changed by at least 20% in each direction (and in many situations by a bigger factor) while
retaining the general qualitative features of the predictions. The exploratory noise, in the absence of sensory noise was chosen
to be 2×10−3 in the non-dimensional variables; the results are completely insensitive to this size in the linear regime of the
dynamics, and the size primarily matters in comparison to the sensory noise (see Figure 4d in the main manuscript). The
baseline sensory noise was multiplicative and only in the energy measurement: this baseline error standard deviation was 10−4

(or 0.01%) times mean energy). In Figure 4d of the main manuscript, except for this baseline case, the other noise condition
cases had both multiplicative and additive noise. The additive noise standard deviation (in non-dimensional units) was taken to
be the same value as the multiplicative noise scaling paramater. The noise range for was chosen to demonstrate how too much
sensory noise may overwhelm the exploratory variability. For Figure 3of the main manuscript, we used additional sensory noise
on the forward velocity, which is used by the feedback controller being tuned. Overall, because the experimental protocols
differ widely even with a single paradigm such as split-belt walking and not all experimental details are typically published
(e.g., accelerations when treadmill speeds are changed), we focus on predicting the qualitative features of the results rather than
pursue a quantitative fit of the model to data or capturing the quantitative details of experimental protocols.

Computational infrastructure. The analysis was implemented in the widely-used scientific language MATLAB (version
2022a). Differential equations were simulated using ode45, with the event detection option to detect heel-strike and switch to
the next step. For performing optimization calculations for fitting to data (not for simulating the ‘learning’), we used fmincon
in MATLAB. Simulation of learning is implemented as a stride-by-stride for-loop, in which the current control parameters
are used to simulate one stride (two steps) and then the control parameters and the memory are changed according to the
learning model outlined herein. Please code associated with this manuscript, LocAd26, available without restrictions in a public
repository.

Further experimental and data details
For experimental work, we used the Vicon motion capture system with Vicon Nexus 1.x, Bertec instrumented split-belt treadmill,
controlled from a MATLAB interface to automatically change speeds. As part of this study, we performed two split-belt
walking experiments, involving a total of three conditions, with a total of 25 participants. The two experiments had 16 and 9
participants, and our participant number per condition was shown to be sufficient in prior split-belt studies for null hypothesis
testing of difference in means (Torres-Oviedo and Bastian 2012, Malone Vasudevan and Bastian 2011). The resulting p-values
were either less than 0.02 when ’significant’ with a threshold of 0.05, or were greater than 0.3, so clearly insignificant. There
were no marginal cases. No data were excluded from the analyses.

Statistical comparisons were performed for results in Figures 5, 6, 7 of the main manuscript. Normality of samples were
tested using the Kolmogorov-Smirnov test, with a null hypothesis of normality and significance threshold for rejecting normality
at the 0.05 level. The default statistical tests are t-tests, paired or unpaired as indicated when results are reported, allowing for
unequal variances. Non-parametric tests were performed to augment the parametric t-tests: for such non-parametric tests, when
the test is paired, we use a Wilcoxon signrank test and when the test is unpaired, we use a Wilcoxon ranksum test, also termed
the Mann-Whitney U test. The non-parametric test always agreed with the parametric tests at the 0.05 threshold of significance.
Model-based qualitative results reported in other figures are essentially deterministic and no statistical tests are necessary for
these. The data were anonymized before analysis and the investigators were thus effectively blinded to group allocation (which
was random). Because of the objective nature of the analyses, such blinding is not relevant to the interpretation of the results.

To illustrate whether model-based predictions agree qualitatively with experimental results in prior studies, data from prior
manuscripts6, 7, 9, 22, 24, 27–32 were obtained by manual digitization and were plotted in Figures 2 and 7b and Supplementary
Figures 2, 5, 6. This digitization is approximate and serves the purposes of qualitative comparisons.

Modulating memory use to not degrade via gradient descent
Consider the performance metric or objective function J(p) to be minimized and the following learning rule that combines
gradient descent and progress toward memory:

pi+1 = pi−αg∇pJ+αm(pmemory− pi). (7)

Here, ∇pJ is the gradient of the objective J with respect to the variable p, when p = pi. The stored motor memory pmemory
need not necessarily be the correct minimum of the performance metric. Here, we first show why αm not being a constant is
necessary, if this procedure must converge to an extremum of the objective. Next, we show that modulating αm via a truncated
cosine tuning is sufficient to allow convergence to an extremum of the objective.
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Feedback gain parameter Ki j Value Feedback gain parameter Ki j Value

K11 -0.5211 K21 0.2793
K12 -0.0859 K22 -0.0290
K13 -0.0073 K23 0.0020
K14 -1.0559 K24 -0.0750

Supplementary Table 2. Parameters of the default feedback controller. Here, K jk is defined as ∆u j/∆sk, where u is the
control and s is the state. For the control variable, u1 is the push-off and u2 is the swing leg angle at touch down. For the state
variable s1 = ẏbody/belt, s2 = ybody/ground, s3 = ∑ybody/ground, s4 = ẏbody/ground− ẏbody/belt. All numbers are non-dimensional.

Necessary condition. Assume αm is constant. Fixed points p∗ of equation 7 are given by when pi+1 = pi = p∗. So, fixed
points p∗ satisfy: p∗ = p∗−αg ∇pJ(p∗)+αm (pmemory− p∗), or

αg∇pJ(p∗) = αm(pmemory− p∗). (8)

Thus, the only situation this procedure converges to an extremum of the objective at which the gradient equals zero (∇pJ(p∗)= 0)
is in the special case where pmemory equals the optimum. For generic pmemory not equal to the optimum, the system will
converge to a p∗ such that the step along the negative gradient exactly cancels the step toward the memory, as in equation 8.
Thus, αm cannot be constant and its modulation in some manner is necessary. This necessary modulation is not unique, and in
the following paragraph, we prove the sufficiency of one such modulation.

Sufficient condition. Assume that αm = α0 h(θgm), where α0 is a constant and θgm is the angle between the negative gradient
−∇pJ and the current direction toward memory: pmemory− p. Say, the function h(θgm) = 0 when |θgm| > 90 degrees and
h(θgm) 6= 0 when |θgm|< 90 degrees. One example of such a function h is a truncated cosine tuning, with h(θgm) = 0 when
|θgm|> 90 degrees.

First, given the assumptions on h(θgm), the iterations always proceeds along a descent direction, that is one that reduces the
objective. This is true because:

1. when |θgm| ≥ 90, we have αm = 0, so the algorithm (equation 7) reduces to gradient descent and thus always steps along
a descent direction;

2. when |θgm| < 90, the step toward memory (pmemory− p∗) has a positive component along the negative gradient by
assumption of θgm. Thus, (pmemory− p∗) is a descent direction, and so the combined gradient descent step and the step
toward memory in equation 7 is always a descent direction.

Second, given the assumptions on h(θgm), we now show that popt with ∇J = 0 is a fixed point of the algorithm. Say
there exists an optimal point popt where ∇J = 0 and popt 6= pmemory. Then, there exists an ε neighborhood S around popt, not
containing pmemory which can be divided into two disjoint sets S1 and S2, with popt being at the boundary separating S1 and S2a –
with the two sets defined as follows. The set S1 is defined so that any point p ∈ S1 satisfies |θgm| ≥ 90 degrees, so that when the
current iterate falls in this region, the learning algorithm defaults to regular gradient descent because αm = 0. Thus, when the
iterates pi remain in S1, p∗ = popt is an accumulation point of the iteration. The complementary set S2 is defined such that any
point p ∈ S2 satisfies |θgm|< 90 degrees, but this set cannot contain any fixed points because |θgm|< 90 is incompatible with
the fixed point equation −αg∇pJ(p)+αm(pmemory− pi) = 0. This can be seen by taking the dot product of this fixed point
equation with −∇pJ(p) and noting that the resulting scalar left hand side is non-negative and the right hand side is negative by
definition. Thus, the only fixed point of the algorithm in the neighborhood of popt is p∗ = popt, in the set S1.

Thus, modulating the αm using a truncated cosine tuning is sufficient to ensure that (1) the algorithm always reduces the
objective and (2) a fixed point of the descent algorithm is the optimal point popt. Of course, what we have shown does not
guarantee convergence to a local minimum, which we leave for an examination in a future study.

Numerical experiments to show that delayed device response can degrade or stop optimization
In a number of exoskeleton adaptation experiments23, 24, 33, 34, the assistance or resistance provided by the exoskeleton on
one step depends on what the human did on the previous step (e.g., the previous step period or step width). Some treadmill
adaptation studies also had a similar protocol35, the treadmill speed is based on previous step periods. At least in some of
these studies23, 24, 33, 34, many subjects did not initiate adaptation despite the obvious energetic advantage to such adaptation.
Here, we argue that this non-adaptation could be due to the temporal delay between human action and the energetic reward or
punishment. If the human nervous system is performing energy optimization based on correlating motor actions on a particular
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step and their energetic consequences, we may expect such an energy optimization to fail when action and reward are separated.
Indeed, there is some precedent for delay affecting motor control. However, the story is a bit more subtle and whether or
not adaptation happens depends on the exploratory optimization algorithm and the exploration. Let us consider two example
algorithms, including the algorithm we used. Say the goal is to find x to minimize the function f (x) and with x0 being the initial
guess for the optimum. For simplicity, let us assume that the system has no additional dynamics.

Algorithm 1. Simplest hill climbing. While the term ‘hill climbing’ has sometimes been associated with gradient descent
(more precisely, gradient ascent), here we refer to an even simpler local search algorithm23. Say the best guess for the optimum
at step i is xi with function value f (xi). The optimizer then evaluates the function at x̂i+1 = xi +µi, that is, evaluates f (xi +µi),
where µi is exploratory noise having Gaussian distribution and with the usual assumptions of Gaussian and independent from
the previous µ’s. The next best guess xi+1 of the optimum is decided by the following rule:

xi+1 = xi +µi if f (xi +µi)< f (xi) (9)
xi+1 = xi if f (xi +µi)≥ f (xi). (10)

That is, make a new guess; if the new guess improves the objective, go there; if not, stay where you are. It is well known that
this algorithm goes toward local minima under normal circumstances. But if there is a ‘delay’ unbeknownst to the algorithm,
for instance, wherein f (x̂i+1) is actually f (x̂i), then decisions to accept will be based on incorrect function values and it is clear
that this algorithm will not be optimizing.

Algorithm 2. Gradient descent with isotropic exploration This is the gradient descent that we have used in this study, in
which the gradient is estimated via linear regression between input and output over the past Ngradient steps. Here, the exploratory
noise is isotropic, so all directions are equally likely. Without any delay between action x and function evaluation f , the
algorithm reliably goes toward a local minimum. When there is a delay, the algorithm may sometimes go toward the optimum,
thus ‘adapting’ and sometimes not make any progress, thus ‘not adapting’, even for the exact same values of all parameters,
as shown in Fig. 10of the main manuscript. The reason the algorithm can sometimes go toward the optimum despite a delay
is because the gradients on successive steps are correlated or persistent. Because successive steps are correlated, despite the
function value mismatch, the algorithm can infer a reasonable descent direction as the gradient estimate, even if the gradient
estimate may itself be biased.
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