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A popular hypothesis regarding legged locomotion is that humans and other large animals
walk and run in a manner that minimizes the metabolic energy expenditure for locomotion.
Here, using numerical optimization and supporting analytical arguments, I obtain the
energy-minimizing gaits of many different simple biped models. I consider bipeds with
point-mass bodies and massless legs, with or without a knee, with or without a springy
tendon in series with the leg muscle and minimizing one of many different ‘metabolic cost’
models—correlated with muscle work, muscle force raised to some power, the Minetti–Alex-
ander quasi-steady approximation to empirical muscle metabolic rate (from heat and ATPase
activity), a new cost function called the ‘generalized work cost’ Cg having some positivity and
convexity properties (and includes the Minetti–Alexander cost and the work cost as special
cases), and generalizations thereof. For many of these models, walking-like gaits are optimal
at low speeds and running-like gaits at higher speeds, so a gait transition is optimal. Minimiz-
ing the generalized work cost Cg appears mostly indistinguishable from minimizing muscle
work for all the models. Inverted pendulum walking and impulsive running gaits minimize
the work cost, generalized work costs Cg and a few other costs for the springless bipeds; in
particular, a knee-torque-squared cost, appropriate as a simplified model for electric motor
power for a kneed robot biped. Many optimal gaits had symmetry properties; for instance,
the left stance phase was identical to the right stance phases. Muscle force–velocity relations
and legs with masses have predictable qualitative effects, if any, on the optima. For bipeds
with compliant tendons, the muscle work-minimizing strategies have close to zero muscle
work (isometric muscles), with the springs performing all the leg work. These zero work
gaits also minimize the generalized work costs Cg with substantial additive force or force
rate costs, indicating that a running animal’s metabolic cost could be dominated by the
cost of producing isometric force, even though performing muscle work is usually expensive.
I also catalogue the many differences between the optimal gaits of the various models. These
differences contain information that might help us develop models that better predict loco-
motion data. In particular, for some biologically plausible cost functions, the presence or
absence of springs in series with muscles has a large effect on both the coordination strategy
and the absolute cost; the absence of springs results in more impulsive (collisional) optimal
gaits and the presence of springs leads to more compliant optimal gaits. Most results are
obtained for specific speed and stride length combinations close to preferred human behav-
iour, but limited numerical experiments show that some qualitative results extend to other
speed-stride length combinations as well.

Keywords: legged locomotion; walking and running; optimization and optimal
control; minimize energy; gaits; metabolic cost
1. INTRODUCTION

Human walking and running gaits are so stereotypical
[1] that many simple, albeit subjective, descriptions of
these gaits have been devised by locomotion researchers
over the years. Inverted pendulum walking and impul-
sive running are two such idealized gait descriptions
involving impulsive leg work. In inverted pendulum
@osu.edu
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walking [2–5], the hip moves in a series of circular
arcs, vaulting over a straight leg. The transition from
one circular arc to the next is accomplished by an
impulsive push-off by the trailing leg, followed by an
impulsive heel-strike by the leading leg. Other versions
of inverted pendulum walking have also been proposed,
with various degrees of overlap between heel-strike
impulse and push-off impulse [4]. In impulsive running
[4–6], the hip describes a series of parabolic free-flight
arcs, interrupted by impulsive elastic-looking bounces
off a near-vertical leg.
This journal is q 2010 The Royal Society
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Figure 1. A sequence of simple biped models with different leg architectures. In each biped model, only one leg is shown; the
second leg is identical to the one shown. All models have point-mass upper bodies and massless legs. (a) The leg is a telescoping
actuator (muscle) with no spring (tendon) in series. (b) The leg has a knee joint, articulated by a muscle without a springy tendon
in series. The two segments are of equal length. (c) The leg is a telescoping actuator (muscle) in series with a spring (tendon). (d)
The leg has a knee joint, articulated by a muscle in series with a springy tendon. (e–h) Visual abbreviations for each of the four
biped models are shown below the corresponding model. These visual abbreviations will be used in other figures to indicate what
model those figures refer to.
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More recently, the centre of mass motion of human
running and walking gaits has been described a little
better by the so-called spring-mass models [7–12].
These spring-mass models embody the observation
that during walking and running, the leg performs
mechanical work more gently than in the ‘impulsive
gaits’ described above, undergoing some compression
and restitution as if the whole leg were a linear spring.

Why do humans walk and run in the manner
approximately described by these simple descriptions?
More generally, why do humans and other animals
move the way they do? An ancient hypothesis, dating
back at least to a contemporary of Galileo and
Newton [13], is that animals move in a manner that
minimizes effort, perhaps as quantified by metabolic
cost per distance travelled [14–16]. Many researchers
have attempted to compute the consequences of such
energetic optimality for biped models of varying com-
plexity and realism with varying predictive success
(e.g. [5,17–27]). Despite considering relatively different
models and assumptions, many of these calculations
have resulted in gaits that resemble those of a human
in some manner. But it is hard to determine the
specific reasons for such agreement as the models are
often relatively complex. Also, such model complexity
prevents us from appreciating the simple structure
of the optimal gaits hiding just beneath the surface,
as it were.

Here, using careful numerical optimization and some
supporting analytical arguments, I examine biped
models with four different leg architectures, minimizing
a number of different ‘metabolic cost’ models—correlated
with muscle work, muscle force raised to some power, a
quasi-steady approximation to empirical metabolic
rates, and generalizations and combinations thereof. I
find that the optimal gaits for many of these model vari-
ations are similar to each other, with the qualitative
differences often predictable simply. For instance, I
define a class of metabolic cost functions with some posi-
tivity and convexity properties called the generalized
J. R. Soc. Interface (2011)
work cost Cg, which includes as a special case both the
quasi-steady empirical model and the work cost. Minimiz-
ing cost functions from this class of functions gives
optimal solutions similar to simply minimizing muscle
mechanical work, even though some of these cost func-
tions have large costs for isometric force. Also, I
consider biped models that have zero, small or consider-
able tendon compliance, so the effect of tendon
compliance on the optimal gaits can be seen clearly.

A central problem in locomotion biomechanics is the
determination of a simple cost function, if it exists,
which when minimized for a simple biped model with
appropriate task constraints, correctly and quantitat-
ively predicts many aspects of human locomotor
behaviour. This paper contributes to the solution of
this inverse optimization problem by organizing, to
some extent, the consequences of various model
assumptions to the optimal gaits. The specific results
of the various gait optimizations for the various biped
model variations are described in detail in §§7–10. In
§12, these results are summarized into a number of
observations (about 15 in number) about the structure
of energy optimal gaits for these simple biped models.
In this section, it is argued that a number of features
(gait structure, walk–run transition, various sym-
metries, walking on straight legs, apparent
minimization of work, passive dynamics, linear spring-
like leg behaviour, unavoidability of joint work, etc.)
that characterize human gait might follow from
energy minimization. Other significant results and
observations (e.g. the ‘optimality of holding still’ and
the structure of optimal leg-swing strategies) are
noted elsewhere in the paper in appropriate sections
and appendices.
2. FOUR BIPED MODELS

The four biped models shown in figure 1 are most clo-
sely related to those used by Alexander [20,21] and
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Minetti & Alexander [23]. All four biped models have
point-mass bodies and massless legs, embodying the
observation that the upper body is usually much more
massive than the legs (a human leg is about 15%
body mass; [28]). The four biped models differ only in
the properties of the leg.

The simplest model is shown in figure 1a, first intro-
duced by Alexander [20] and elaborated later by
Srinivasan & Ruina [5,29] and Srinivasan [30]. In this
model, the leg is a telescoping actuator with no elastic
spring in series with it; here, the telescoping actuator
is identified with the sum total of all muscles articulat-
ing all joints, assuming that the muscles have no
springy tendons in series.

In the model of figure 1b, the massless leg has two
segments of equal length connected at a knee, with a
uniarticular extensor muscle, without a springy
tendon in series. This muscle has a constant moment
arm about the joint, so that the joint torque is a
constant multiple of the muscle force.

Animals have springy tendons in series with their
muscles. These tendons are capable of storing elastic
energy when stretched and releasing the energy while
shortening with little loss of stored energy, thus poten-
tially lowering the metabolic cost [31,32]. The biped
models in figure 1c,d attempt to capture this feature
by adding a ‘linear’ spring in series with the muscles
(actuators) in the previous two models.

The properties of the telescoping actuators and
muscles in these biped models are discussed in §5.
Figure 1e–h show visual abbreviations for each of the
four models to be used in other figures in this article.
2.1. Equations of motion for the bipeds

All the equations (figures) in this paper are written
(drawn) in terms of non-dimensional quantities. All
quantities are non-dimensionalized by dividing by
appropriate combinations of the maximum leg length
lmax, the body mass m and the acceleration due to grav-
ity g. This non-dimensionalization, same as in
Srinivasan & Ruina [5] and Srinivasan [30] with slightly
different notation, is equivalent to choosing units such
that the leg length, the body mass and the acceleration
due to gravity are all equal to 1 in their respective units.

The most general non-dimensional equations
describing the motion of our biped models are

€x ¼ F1ðtÞ �
x � xc1

l1
þ F2ðtÞ �

x � xc2

l2

and €y ¼ �1þ F1ðtÞ �
y
l1
þ F2ðtÞ �

y
l2
;

ð2:1Þ

where (x, y) is the non-dimensionalized position of the
point-mass upper body (centre of mass) in the sagittal
plane, as shown in figure 1. These equations apply directly
to the double support phase, when both feet contact the
ground. Here, F1(t) and F2(t) are the compressive leg
forces as functions of time, acting along the lines joining
the feet and the upper body, xc1 and xc2 are the x-positions
of the two feet when in ground contact and

l1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � xc1Þ2 þ y2

q
and l2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � xc2Þ2 þ y2

q
are the

lengths of the two legs when they are both in ground
J. R. Soc. Interface (2011)
contact. The equations of motion when only one foot
touches the ground (single-stance phase) or when neither
foot touches the ground (flight phase) are obtained by
setting one or both leg forces to zero in equation (2.1).

The non-dimensional stride period is T, the non-
dimensional average speed is V ¼ [x(T ) 2 x(0)]/T and
the non-dimensional stride length is D ¼ [x(T ) 2

x(0)]. If vfwd is the dimensional average speed and dstride

is the dimensional stride length, then the non-dimen-
sional speed is V ¼ vfwd=

ffiffiffiffiffiffiffiffiffiffi
glmax
p

(essentially the
Froude number; [33]) and the non-dimensional stride
length is D ¼ dstride/lmax.
3. GAIT OPTIMIZATION PROBLEM
STATEMENT IN BRIEF

For each of the four biped models, I seek periodic gaits
with at most one stance phase per leg per stride, having
a given average speed V, stride length D and stride
period T ¼ D/V (all non-dimensional), such that the
metabolic cost over the stride period is as small as possible.

The metabolic cost minimized is one of many meta-
bolic cost models discussed in §5. The leg forces and/or
muscle forces are constrained either by simple bounds or
more elaborate force–velocity bounds. The non-dimen-
sional leg length l(t) is constrained to be at most 1. The
goal is to determine the optimal values for the leg forces
as functions of time F1(t) and F2(t), appropriate initial
conditions, the time periods over which each leg con-
tacts the ground, and the foot–ground contact points.

See the electronic supplementary material for a more
detailed formulation of the optimization problems, and
the numerical methods used in their solution. The
numerical methods are similar to those used earlier by
Srinivasan [5,30], with modifications required by the
changes in the biped models and cost functions. The
electronic supplementary material has brief notes on
handling the combinatorial structure of possible bipedal
gaits and the regularization of non-smooth functions
and kinematic singularities.

Each optimization is performed for a given [V, D]
pair, so ideally one would like to perform gait optimiz-
ations for a large number of [V, D] pairs, thereby
determining the dependence of the optimal gait on [V,
D] as in Srinivasan & Ruina [5] and Srinivasan [30].
But because many biped models with many model vari-
ations are considered here, it is feasible to explore only a
few different [V, D] pairs in detail. For the gait optim-
izations described in this paper, I chose [V, D] pairs
mostly on the preferred human speed–stride length
relation, given by the simple expression D ¼ 2.5V0.6,
as used by Alexander [20,21]. However, for many of
the models, I also explored a few other [V, D] pairs
not close to this preferred human behaviour and briefly
allude to the results from these calculations in §12.
Other [V, D] pairs are also implicitly described in the
analytical calculations of appendix C.

Finally, it is thought that humans and animals move
in a manner that roughly minimizes the total metabolic
cost per unit distance travelled [14,16,34,35] when not
in a hurry. However, when both speed V and stride
length D are specified, as in the optimization
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calculations here, minimizing the metabolic cost per
unit time Ėm, the metabolic cost per unit distance
Ėm/V, and the metabolic cost per stride Ėm.D/V are
all mathematically equivalent, and will necessarily
give the same optimal gaits (see [16] for a discussion).
4. TOTAL METABOLIC COST OF
LOCOMOTION

For simplicity, I model the total metabolic cost for loco-
motion as being separable into three additive parts: (i)
resting cost, (ii) stance cost, and (iii) leg-swing cost
[2,29,36].

Resting cost. The resting cost Ėr is a constant equal
to the nominal metabolic rate at rest. For most of this
paper, the objective is to determine gaits that minimize
the energetic cost per unit distance travelled at specified
average speeds V and stride lengths D. When both the
speed and stride length are specified, the resting cost
per unit distance (Ėr/V speed) only contributes a con-
stant to the total cost per distance, and, therefore,
drops out of the optimization. An aside: in many
models without a resting cost, the total cost per dis-
tance is a strictly increasing function of the forward
speed, making the optimal walking speed zero; the rest-
ing cost makes the optimal speed non-zero [37,38], but
as described above, is not relevant when the speed is
specified. See [16] for an account of issues related to
optimal walking and running speeds.

Stance cost. The stance cost over a stride is the
metabolic expenditure of the legs, either the telescoping
actuator or the knee muscle in figure 1, as the legs exert
force and perform work on the upper body while in con-
tact with the ground (stance phase). This stance cost
depends in detail on the motion of the centre of mass.
For almost all of this paper, the goal is to determine
gaits that minimize the stance cost for a given speed
and stride length.

Swing cost. The possible cost of swinging the legs is
neglected, as is consistent with massless legs. I constrain
both the speed and the stride length in the optimiz-
ations because it is usually thought that a leg-swing
cost is important for determining the optimal stride
length when given only the forward speed [30,36]. The
effect of adding legs with masses, with an attendant
cost for leg swing [28], is briefly discussed in §11. As
noted in Srinivasan & Ruina [5], if the leg-swing cost
is a pure function of V, D and T (which it is
not quite), it drops out of the optimization at any
specified [V, D].
5. MUSCLE MODELS

5.1. Metabolic cost models and force–velocity
relations

One might expect the energy optimal gaits to depend
somewhat on the specific properties of the muscles
and actuators. A muscle model specifies how the
muscle’s length lm, shortening rate vm, activation a
(0 � a � 1) and possibly other relevant muscle state
variables (like the strain distribution of the bound
cross-bridge population) affect the tensional muscle
J. R. Soc. Interface (2011)
force Fm (�0) and the metabolic energy expenditure
of the muscle.

Work cost Cw. The simplest muscle model considered
here expends energy at a rate proportional to a
weighted sum of the positive and negative mechanical
power produced by it (as in [5,20]):

metabolic cost; Cw ¼
ð
ðb1½P�þ þ b2½P��Þdt; ð5:1Þ

where P ¼ Fmvm is the mechanical power of the muscle,
the positive part [P]þ of the power is defined as: [P]þ ¼
P when P � 0 and [P]þ ¼ 0 when P , 0. The integral of
[P]2(¼[2P]þ) gives the negative work. This cost model
is motivated by the observation that a muscle’s meta-
bolic rate is somewhat correlated with mechanical
power, but with different positive constants of propor-
tionality b1 and b2 (inverse efficiencies) for positive
and negative work, respectively [4,39]. The primary
purpose of this simple model here is to serve as a refer-
ence for what ‘minimizing work’ entails, and will often
be called the ‘work cost’. Note that isometric force gen-
eration (force without work) has no cost in this model
and negative work cannot be stored in the muscle to
perform positive work later.

Generalized work cost Cg. It is useful to define a
(new) more general cost function Cg of the form:

metabolic cost Cg ¼
ð

Fm � gðvmÞdt; ð5:2Þ

where g(vm) is some positive and convex function of the
muscle-shortening velocity, and the muscle force obeys
Fm � 0. The work cost Cw (equation (5.1)) is a special
case of Cg with g(vm) ¼ b1[vm]þ þ b2[vm]2. Another
simple special case is a linear combination of a work
cost and the integral of muscle force, suggested by
Alexander [40], with g(vm) ¼ b1[vm]þ+b2[vm]2 þ b3.
The function g(vm) is the ‘cost per unit force magnitude’
at the shortening rate vm. Cg is called the generalized
work cost because minimizing Cg often gives optimal
behaviour similar to minimizing Cw, even though it
can have substantial costs for isometric force.

Convexity and positivity of g(vm) will be key determi-
nants of the qualitative structure of the optimal gaits.
In §6, I elaborate on what one means by convexity
and show that convexity is necessary to ensure mean-
ingful optimal solutions in a simple but fundamental
example of ‘supporting a weight’. In appendix B, I dis-
cuss another important task that suggests positivity as
a plausible property. In this paper, I will only use Cg

with positive and convex g(vm) in the optimizations.
The g(vm) for Cw is piecewise linear and (barely)
convex.

Alexander–Minetti quasi-steady empirical
cost CAM. Next, I consider a simplified Hill-type
model, borrowed from Alexander and Minetti
[23,41,42]. In this model, the muscle force depends on
muscle activation a and shortening velocity vm, but
not directly on muscle length lm. In the following,
vmax is the maximum shortening velocity at which a
positive muscle force can be produced, and F0 is the
isometric muscle force when fully activated (vm ¼ 0,
a ¼ 1). Figure 2a,b shows the normalized force
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activation a and normalized shortening velocity vm/vmax, given the isometric force F0 and the maximum shortening velocity
vmax at which the muscle can produce force. (c) The Alexander–Minetti empirical metabolic rate per unit muscle force based
on heat and ATPase activity ĊAM/Fmvmax ¼ g(vm/vmax). (d) The work cost per unit force Ċw/Fmvmax ¼ (b1[vm]þ+b2[vm]2)/
vmax. The b1 and b2 for (d) were selected so that it most closely resembled (c).

1Actually, the simplest model for electric motors would be a1F
2 þ a2P,

the first term related to Joule heating losses and the second term
allowing for regeneration of mechanical power. The power P gets
integrated to zero when one considers periodic motions in the
absence of physical dissipation, as is the case here, so the second
term drops out of the optimizations here.
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Fm/aF0 ¼ f(vm/vmax) and the normalized empirical
cost rate ĊAM/aF0vmax ¼ g(vm/vmax) as a function of
the normalized muscle-shortening velocity vm/vmax.
This is a quasi-steady muscle metabolic cost model,
an approximation to some roughly steady-state con-
stant-vm experimental data on muscle heat generation
and ATPase activity at full activation (reviewed in
[43,44]), with an extra assumption of linear dependence
of both the force and the cost rate on the muscle
activation.

Observe that CAM can also be written in the form Cg

(equation (5.2)). The g(vm) ¼ ĊAM/Fm ¼ vmaxg/f for
CAM is depicted in figure 2c. A g(vm) for Cw with appro-
priately chosen b1 and b2 is shown in figure 2d to
emphasize the similarity of Alexander–Minetti empiri-
cal metabolic cost CAM and the work cost Cw. This
apparent similarity between the cost CAM and the
work cost Cw, and the specific plots (figure 2c,d) were
first suggested to me by A. Ruina (2008, personal
communication). The g(vm) for CAM is convex or
close-to-but-not-quite convex depending on the
approximation of the experimental data.

Muscle force costs and robot electric motor
costs. Another cost function commonly used in the
gait optimization literature is:

CFb ¼
ð
jFmjb dt: ð5:3Þ

I mainly consider b ¼ 2, giving CF2. The b ¼ 1 case
is an exceptional case of Cg, with g(v) ¼ constant (see
§6 for comment). The CF2 cost or a related activation-
squared cost has been used by numerous authors as a
proxy for a (metabolic) cost function, especially in the
context of inverse dynamics, when one wishes to com-
pute the individual muscle forces consistent with an
observed body motion when there are many more
muscles than degrees of freedom in the model
[24,45,46]. While this procedure often gives reasonable
agreement with muscle EMG data, there is no direct
biophysical basis for such a cost depending purely on
the muscle force; it contradicts the so-called Fenn
effect [47] and (equivalently) the muscle data that
motivate the cost CAM just described. When the force
is replaced by a torque, CF2 is also perhaps the simplest
J. R. Soc. Interface (2011)
cost model for the energy cost for electric motors and
therefore relevant for legged robots1 [48–51].

Cost combinations. The metabolic cost functions
described so far (equations (5.1)–(5.3) and figure 2b)
are only simple models. So I also consider convex com-
binations of some cost functions: for instance, C ¼
lCw þ (1 2 l)CF2, where 0 � l� 1. Such cost combi-
nations are not meant as actual models for metabolic
costs, but are considered mainly to examine the robust-
ness of the optimal solutions to perturbations in the
costs.

Force–velocity relations. Among the numerous
optimizations performed for this paper, only a few
involved a physiological force–velocity relation, such
as that shown in figure 2a. For the rest of the optimiz-
ations, only a simple muscle force bound is used.
Sometimes, a linear force–velocity relationship, such
as Fm � F0(1 2 vm/vmax), completely specified by F0

and vmax, was used for simplicity of computation.
5.2. Muscle forces and length rates

The above metabolic cost functions and the force–vel-
ocity relations are expressed in terms of the muscle
force Fm and the muscle-shortening rate vm. Because
of the differences in body architectures, I now describe
what specifically is meant by Fm and vm in each of
the four models.

Springless telescoping biped. The muscle is iden-
tical to the telescoping actuator, so the muscle force is
identical to the leg force F. The muscle-shortening
velocity is equal to the leg lengthening rate (vm ¼ l̇).

Springless kneed biped. The muscle force is pro-
portional to the knee moment and the muscle length
shortening rate is proportional to 2ȧ, the negative of
the knee angle rate. The knee moment M is given by
M ¼ 2(F/2). sin(a/2), where F is the leg force and a
is the knee angle. The knee angle by l ¼ cos(a/2).
The knee angular velocity ȧ is given by: l̇ ¼ 2ȧ
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sin(a/2)/2. The knee muscle force is Fm ¼ jMj/rm,
where rm is the constant moment arm of the muscle
about the knee joint. Similarly, the knee muscle-short-
ening rate is vm ¼ 2rmȧ. The actual value of the
moment arm rm plays no role in this paper, because
all the calculations—the evaluations of the metabolic
cost, the dynamics and the constraints—are expressed
directly in terms of the knee moment M and the knee
angular velocity ȧ.

Springy telescoping biped. The muscle force is
identical to the leg force F here. The total leg length l
is the sum of two lengths: tendon spring’s lspring and
the telescoping actuator’s lactuator. When the spring is
linear with non-dimensional stiffness k, the leg force is
equal to F ¼ 2k(lspring 2 l0), where l0 is the spring’s
stress-free length. The spring length rate is then
l̇spring ¼ 2Ḟ/k. The actuator length rate is l̇actuator ¼

l̇ 2 l̇spring. The muscle-shortening rate is vm ¼ l̇actuator.
In this paper, the quantities lactuator and lspring appear
in calculations either as their derivatives or their sum
l, so that their individual values are irrelevant and left
undetermined up to a constant.

Springy kneed biped. The muscle force is pro-
portional to the knee moment as before (Fm ¼ jMj/
rm). The knee flexion angle a is accommodated by
changes in the spring length and the muscle length,
which are quantified in terms of the knee angle changes
they are responsible for: aspring and amuscle. The spring
deflection is related to the knee moment by M ¼ 2

kaspring ¼ 2(F/2) . sin(a/2), assuming a torsional
spring stiffness k. The spring angular rate is given by
ȧspring ¼ 2Ṁ/k ¼ (Ḟ/2k) sin(a/2) þ (Fȧ/4k) cos(a/2).
The muscle angular rate is then ȧmuscle ¼ ȧ 2 ȧspring.
The muscle length shortening rate is vm ¼ 2rmȧmuscle.
Again, the moment arm rm of the muscle drops out of
all calculations here.
6. ‘HOLDING STILL’ IS OPTIMAL FOR CG IF
G(V) IS CONVEX

In §5, a class of candidate muscle cost functions called
the generalized work cost, Cg ¼

Ð
Fg(v) dt, was intro-

duced. Before this class of cost functions is used in the
locomotion optimization problems, I use this cost func-
tion in the context of the much simpler task of ‘exerting
J. R. Soc. Interface (2011)
a given average force’ using a muscle, with the least
cost. This problem is described to show why g(v) must
be strictly convex around v ¼ 0 and what happens if
g(v) were not convex. This section is perhaps slightly
digressive (but fundamental), and the reader may skip
to the next section without much loss of continuity.

Supporting an average force. Consider the situ-
ation shown in figure 3c. The goal is to use the muscle
to support the mass (m ¼ 1) at some vertical position
on average, in the presence of gravity, while minimizing
the cost Cg with a strictly convex g(v), over some long
time period (or per unit time). I wish to show that hold-
ing the mass exactly at rest for all time (that is, holding
still) is less expensive than, say, moving the mass about
an average position periodically with any period
however long.

So consider, as an alternative, a time-varying peri-
odic force F(t), producing a time-varying vertical
velocity v ¼2 ẏ. Say the time period of this oscillation
is tp. The equation of motion is v̇ ¼ F 2 1 (gravity
constant ¼1). The periodicity equations imply

vð0Þ ¼ vðtpÞ )
ðtp

0
ðF � 1Þ dt ¼ 0;

)
ðtp

0

FðtÞ
tp

dt ¼ 1 ð6:1Þ

and

yð0Þ ¼ yðtpÞ )
ðtp

0
vðtÞ dt ¼ 0: ð6:2Þ

Definition: strictly convex function. A function
g(v) is said to be strictly convex if for every v1 = v2 in
its domain, it satisfies

gðmv1 þ ð1� mÞv2Þ , mgðv1Þ þ ð1� mÞgðv2Þ; ð6:3Þ

where 0 , m, 1. In words, the ‘function value at a
weighted average of two v’s’ is less than the ‘weighted
average of the function values at two v’s’. More colloqui-
ally, convex functions are functions that are ‘bowl
shaped’. Figure 3a,b shows examples of convex and
non-convex functions. In figure 3a,b, if some point on
the solid line represents the left-hand side of equation
(6.3), the point on the dotted straight line with the
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same abscissa (v-value) represents the right-hand side
of equation (6.3).

Proof of optimality. Strictly convex functions
obey the so-called Jensen’s inequality [52]:

g
ðtp

0
mðtÞvðtÞ dt

� �
,

ðtp

0
mðtÞgðvðtÞÞdt; ð6:4Þ

where m(t) is any non-constant non-negative (piecewise
continuous) function that satisfies

Ð
0
tpm(t) ¼ 1 and v(t)

is non-constant. Equation (6.4) is essentially a general-
ization of equation (6.3) in the sense that equation (6.4)
involves weighted averages over a possibly continuous
distribution of v, as opposed to averages over only two
distinct v’s in equation (6.3). Setting m(t) ¼ F(t)/tp in
equation (6.3),

g
ðtp

0

FðtÞ
tp
� vðtÞ dt

� �
,

ðtp

0

FðtÞ
tp
� gðvðtÞÞdt ¼ Cg

tp
ð6:5Þ

for non-constant F(t). The right-most equality with Cg/
tp above assumes that F(t) is positive. Also,

Ð
0
tpF(t)v(t)

dt ¼ 0 because this is the mechanical work done over
one period and integrates to zero by periodicity.
So, equation (6.5) simplifies to

gð0Þ ,
Cg

tp
or gð0Þtp , Cg: ð6:6Þ

That is, the cost Cg with any non-constant periodic
F(t) over time tp will always be greater than the
g(0)tp, which can only be attained by keeping the
mass absolutely still: v(t) ; 0. Thus, ‘holding still’ is
the unique optimal strategy (at least from among peri-
odic motions of arbitrarily long periods) if g(v) is
strictly convex.

Effect of non-convexity. If g(v) were not convex
(concave) around v ¼ 0, for instance, as in figure 3b,
there exists a time-varying m(t), and therefore F(t),
for which the above inequalities are reversed; that is,
Cg � g(0)tp and a time-varying F(t) (‘tremor’) would
be better than holding still. In the non-convex example
of figure 3b, one would be able to reduce the effective
g(v) to the dotted line, from the solid line, by operating
between v1 and v2. It is not clear if such optimality of
oscillation, as opposed to rest, is physiological. A provo-
cative conjecture would be that muscle activation is
slightly ‘noisy’ to take energetic advantage of the poss-
ible slight non-convexity in the cost function, a
hypothesis I hope to examine elsewhere in greater
detail. To keep things simple, g(v) is restricted to
convex functions here.

Note that strict convexity of g(v) is sufficient but not
necessary for the above result. Optimality of holding
still only requires that the inequality (equation (6.3))
be strict when the weighted average of v evaluates to
v ¼ 0. For instance, functions like g(v) ¼ jvj, while not
strictly convex away from v ¼ 0, do have holding to
be optimal for this task. Most significantly, note also
that the optimality of holding still does not depend at
all on the minimum of g(v) being at v ¼ 0; for instance,
even if g(v) ¼ 1 þ (v 2 1)2, holding still (v(t) ; 0) is
optimal. Nor is it necessary that g(v) be positive.
J. R. Soc. Interface (2011)
Another situation. The optimality of holding still
also applies to other situations; for instance, that
shown in figure 3d, in which it is required that the
muscle exert an average force of unit magnitude on
the wall, as it perhaps oscillates against the spring.
Set v ¼ ẋa. By periodicity, xa(0) ¼ xa(tp) and xs(0) ¼
xs(tp), giving

Ð
0
tp F(t)v(t) dt ¼ 0 (no net work done).

Jensen’s inequality (equation (6.5)) again applies if
g(v) is strictly convex, giving g(0)tp , Cg, demonstrating
the optimality of holding still.

Positivity. In appendix B, a simple task analogous to
swinging a leg is considered. In this leg swing task, posi-
tivity of g(v) is required to avoid some implausible
optimal strategies. Positivity of g(v) is natural; it
simply means that the metabolic rate is positive whether
the muscle is performing positive or negative work. Thus,
in this paper, g(v) is both positive and convex.
7. SPRINGLESS TELESCOPING BIPED

As the simplest in the series of four models (figure 1a–d),
I discuss the optimal gaits of the springless telescoping
biped (figure 1a) in greater detail than that of the other
models. Srinivasan and Ruina [5,30] considered the sim-
plest version of this model, determining the periodic
gaits that minimized the work cost Cw at a range of
speeds and step lengths [V, D], assuming that the leg
forces can be unbounded if necessary. They discovered
that inverted pendulum walking was optimal at low
speeds, impulsive running was optimal at higher
speeds and a third hybrid gait dubbed ‘pendular run-
ning’ was optimal at a range of intermediate speeds
and large step lengths. However, this calculation did
not allow double support, considered only a single
step, assumed that each step is the same as every
other step and did not minimize multiple cost models
other than Cw. In the following, I rid the calculations
of these simplifications. I assume bounded leg forces,
allow for double-support phases, consider two steps
(equal to one stride) instead of one step, with the possi-
bility that the steps might be different, and consider
multiple muscle metabolic cost models. In the rest of
the paper, unless specified otherwise, the maximum
possible leg force is 3 (i.e. three times body weight).
This choice for the maximum leg force has no special
significance except being sufficiently greater than 1 to
support many gaits, but not unrealistically high.
Values such as 2.5 or 3.5 give qualitatively the same
answer for a range of [V, D].

Minimize work. Minimizing Cw with these (mostly)
relaxed constraints does not produce any gaits qualitat-
ively different from those found in Srinivasan & Ruina
[5]. Mostly, I found that non-impulsive analogues of
the three impulsive gaits—namely, inverted pendular
walking, impulsive running and pendular running [5]—
minimized Cw. That is, the infinite forces required
during the impulses of the three previously optimal
impulsive gaits are replaced by the maximum available
leg forces (here, equal to 3) in these non-impulsive gaits.

For example, figure 4a–c shows the non-impulsive
analogue of inverted pendular walking, optimal when
V ¼ 0.39 and D ¼ 1.36. This optimal walking gait has
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Figure 4. (a–c) A non-impulsive analogue of an inverted pendulum walking with the springless telescoping model, minimizing the
work cost Cw at V ¼ 0.39, D ¼ 1.36 and Fmax ¼ 3. The gait consists of the body moving in circular arcs vaulting over a straight
leg, with the transition from one circular arc to the next accomplished by finite-force impulses (with F � Fmax) by the trailing leg
and the leading leg, identified with the push-off and the heel-strike, respectively. (d– f ) Optimal running with springless telescop-
ing model, minimizing the work cost Cw at V ¼ 1.2, D ¼ 2.8 and Fmax ¼ 3. The running stance phase has the leg force at Fmax

identically. The graphs corresponding to the two legs’ stance phases are overlaid in (b,c,e,f ) and they appear indistinguishable,
indicating left–right symmetry.
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negligible double-support phases, despite allowing for
them. A substantial double support is optimal only
when the maximum leg force available is too close to
or less than 1, when a single leg is unable to support
body weight. For most of the stance phase, the leg
length is constant and no leg work is performed. Nega-
tive work is performed at the beginning of the stance
phase, akin to a heel-strike. Positive work is performed
at the end of each stance phase, akin to a push-off.

Figure 4d– f shows the non-impulsive analogue of
impulsive running, found to be optimal at V ¼ 1.2
and D ¼ 2.8. Here, the leg force is equal to the maxi-
mum allowed leg force throughout the stance phase.
Negative work is performed for the first half of the
stance phase, and positive work during the second
half, redirecting the centre of mass velocity from
downward to upward.

The energy cost landscape appears to be relatively
flat near the transition from walking to running.
Figure 5a–c shows the non-impulsive analogue of pend-
ular running [5], optimal at V ¼ 0.9 and D ¼ 1.17.
Figure 5d– f shows a very different asymmetric gait,
but with a cost only 1 per cent greater than that of
the optimal pendular run at the same speed and
stride length. The energy cost landscape in the [V, D]
space with the finite leg forces is probably similar quali-
tatively to when the optimal gaits involved idealized
impulses in Srinivasan & Ruina [5] and Srinivasan
[30], so it is not plotted here.

Adding a force–velocity relation. First, recall
that all three optimal gaits obtained above with only
a simple bound on the leg forces made use of the maxi-
mum available forces available to them at some point
during the stance phase. So by continuation, when a
non-trivial force–velocity relationship is imposed for
the telescoping actuator, one still expects the optimal
gaits to take advantage of the maximum available
forces. However, now, the maximum available forces
are dependent on the leg length rate—in particular,
J. R. Soc. Interface (2011)
the maximum available force when the leg is performing
negative work is greater than when the leg is performing
positive work. This suggests that the leg force will cease
to be symmetric about mid-stance. Figure 6a–c shows
the effect of a linear force–velocity relation on the walk-
ing gait of figure 4a–c. As just argued, the leg force is
slightly asymmetric about mid-stance—the push-off is
slightly different from the heel-strike—but this differ-
ence has little effect on the centre of mass trajectory,
which remains quite close to circular arcs. Similarly,
figure 6d– f shows the optimal running gait (V ¼ 1.2,
D ¼ 2.8) when constrained by a linear force–velocity
relation. The leg force hugs the force–velocity con-
straint, just as when there was a simple bound on the
force, the leg force was identically equal to the
maximum force.

Minimize generalized work costs Cg and CAM.
As described in §5, the quasi-steady model CAM with a
convex g(v) is a special case of Cg. Minimizing CAM with
a force–velocity relationship (V ¼ 0.39, D ¼ 1.38) gave
the gait depicted in figure 7a,b, again very similar to
inverted pendulum walking.

In addition to CAM, I considered two more ad hoc
examples of Cg. Figure 7c,d shows the optimal walking
gait at V ¼ 0.39, D ¼ 1.38 for Cg with an g(v) ¼ v2

and figure 7e,f shows the optimal walking gait for
g(v) ¼ (v 2 0.5)2. Both are close to inverted pendulum
walking. Numerical experiments with a few other
convex and positive g(v) also result in qualitatively
similar optimal gaits to that which minimizes the
work cost Cw, in particular, inverted pendulum walk-
ing at low speeds. At higher speeds, running gaits
(not shown) that involve leg forces that essentially
reach the force bounds, be they simple force bounds
or force–velocity relations, appear to be optimal. In
this sense, these gaits are analogous to impulsive run-
ning. As before, when the leg force tracks the force–
velocity relation, the leg force can be asymmetric
about mid-stance. Overall, these results suggest that
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the optimal gaits for Cg are essentially similar to that
for Cw.

With additive force costs. Consider a linear force
penalty (i.e. CFb with b ¼ 1) added to the costs Cw,
CAM or Cg. Then, the new metabolic power would be
Fg(v) þ b1 F ¼ F(b1 þ g(v)), which is also of the form
Cg with a g(v) simply shifted up by the constant b1,
still positive and convex. So, it is not surprising that
essentially no qualitative changes are found in the
optimal gaits for a linear additive force cost.

A quadratic force cost CF2 is qualitatively different,
being a much stronger penalty on large forces and,
less directly, force fluctuations. See appendix A for a
simple example that informs the following discussion.
Periodic locomotion, as a task, does not prescribe the
average leg force—but periodicity does specify that
the average vertical force on the body must equal the
weight. At small stride lengths, when the legs do not
make large angles with the vertical, this vertical force
J. R. Soc. Interface (2011)
constraint is similar to an average leg force constraint.
Thus, when one has a cost like CF2, one obtains gaits
in which both the force fluctuations and the actual leg
forces are minimized. The leg forces are reduced by
having large double-support phases and the force fluc-
tuations are reduced by having the leg forces
relatively constant. In fact, at small step lengths, the
optimal walking gait (not shown) tended to have
mostly double support and very little single stance, an
artefact that can perhaps be mitigated by having a sub-
stantial leg-swing cost. But even for a pure CF2 cost, it
appears that for high enough speeds and step lengths,
the optimal gait, at least locally, is one with a flight
phase (figure 8).

With explicit bounds on force rates. Thus far, it
has been assumed that the leg force can rise from zero
instantaneously if necessary. But muscles have internal
dynamics that limit the rate of increase of the force they
produce. To simply model this, I bound the rate of leg
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force change: 23 � Ḟ � 3, the specific values selected so
the leg force rate bound is limiting, but not so limiting
that a gait cannot be supported. It is further assumed
that the forces must start and end at zero, and can
change only continuously. Figure 9a–d shows the
results of minimizing Cw at V ¼ 0.39 and D ¼ 1.36
with this force rate constraint. Here, the presence of
double support is energetically optimal—that is,
making the double-support phase zero increases the
energy cost. Note that this double support is an explicit
effect of bounding the force rates. Exactly the same
minimization, in the absence of bounding the force
rates, showed that having no double support was opti-
mal (figure 4). Figure 9e shows the even smoother
(and realistic) optimal leg forces when the second
derivatives of the leg forces were appropriately
bounded.

At higher speeds, a running gait with a unimodal
(increasing–decreasing) leg force profile is obtained,
with the increase and decrease in the leg force happen-
ing at the maximum available leg force rate
(figure 10a–c). If the second derivative of the leg
force is bounded instead, a running gait with a
smoother (piecewise quadratic) unimodal leg force
F(t) is obtained (figure 10d– f ). Interestingly, for a
range of such rate bounds, a graph between the leg
force and the leg compression looks approximately
linear—the so-called linear spring-like leg behaviour
[9,10]—despite the presence of no springs in the
calculations [53].
8. SPRINGLESS KNEED BIPED

The springless kneed biped is shown in figure 1b. The
knee angle is a and the knee moment is M, positive
when anti-clockwise on the upper leg. The leg length
is then l ¼ cos(a/2) and the leg length rate
l̇ ¼ 2sin(a/2) . ȧ/2. The compressive leg force F and
the knee moment M are related as: M ¼ 2F sin (a/
2). Thus, when a is small, a large leg force (F ¼ 2M/
sin(a/2)) is possible with a small leg moment; also,
although not explicitly accounted for by this formula,
finite leg forces are possible at a ¼ 0 with zero leg
moments. A related singularity is that the knee angular
velocity ȧ goes to infinity for non-zero leg length rate l̇
when a! 0; see the electronic supplementary material
for how these ‘kinematic singularities’ are regularized
J. R. Soc. Interface (2011)
during the optimization. The leg power is, of course,
identical to the knee power: P ¼ Fl̇ ¼Mȧ.

Minimizing work cost Cw. As just mentioned, the
mechanical power P ¼ Fl̇ of the leg is identical to the
mechanical power Mȧ of the knee muscle in the spring-
less kneed biped. Therefore, the results of minimizing
the work cost Cw for the kneed biped of figure 1b are
identical to those obtained when Cw is minimized for
the telescoping biped of figure 1a, in the absence of
other constraints. Force constraints are now most natu-
rally imposed on the knee moment (and, therefore, the
muscle force) rather than the leg force. A simple bound
on the knee moment, as long the bound is not too small,
results in essentially the classic work-minimizing gaits
from earlier (inverted pendulum walking, etc).

Minimizing ‘robot’ knee moment cost CF2. As
noted, the kinematic singularity at the knee allows a
kneed biped to exert a finite leg force with very little
knee moment when the leg is close to straight. Thus,
when the metabolic cost is dominated by the CF2

term (here
Ð
M2 dt), one might superficially expect

that the biped would operate near the kinematic singu-
larity for as much of the stance phase as possible.
Indeed, this is true of the optimal walking gait, for
instance, as shown in figure 11 for V ¼ 0.39 and D ¼
1.38. The leg is fully extended for almost all the
stance, except for the beginning and the end of the
stance phase, when push-offs and heel-strikes happen
with large leg forces. In the limit of infinite allowed
leg forces, this walking gait appears to approach the
classic inverted pendulum gait described earlier. At
higher speeds, it appears advantageous to break into
a run (figure 12) and as the allowed leg forces are
increased, the optimal gait approaches the impulsive
running gait, even though the leg force seems somewhat
U-shaped (figure 12b). Thus, remarkably, this force-
based cost CF2, which is completely unrelated to the
work cost Cw, gives essentially the same optimal gaits
for this kneed biped, at least in the impulsive limit.

With a force–velocity relation. The force–vel-
ocity relation is now a constraint on the knee moment
M as a function of the knee angular velocity ȧ. The sim-
plest such constraint is linear. Noting that a positive ȧ

corresponds to the knee muscle stretching, the linear
force–velocity relation used is

M � M0
1þ ȧ

vmax

� �
when ȧ � �vmax; ð8:1Þ
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and M ; 0 when ȧ , vmax. Again, M0 and vmax were
selected such that they support gaits, but are not too
high, as can be gleaned from the figures referred
to below.

Because of the kinematic singularity, at the end of
stance, if l � 1 and l̇ . 0, ȧ is negative and very large,
the available knee moment M is zero, because of the
force–velocity constraint equation (8.1), and unable to
provide the necessary compressive leg force for the
push-off. Thus, introduction of a force–velocity con-
straint implies that the biped might have to operate
slightly away from the kinematic singularity, so that
reasonable knee moments are available. Figure 13a–f
shows the CF2-minimizing walking gait, when the biped
is explicitly constrained to operate away from the kin-
ematic singularity by setting lmax ¼ 0.95 (and an extra
leg force constraint Fmax ¼ 3). The knee moment
required now is well within the feasible set allowed by
the force–velocity constraint. Figure 13g– l shows a Cw-
minimizing running gait in the presence of force–velocity
constraints on the knee muscle, constrained by Fmax ¼ 3.
When the force–velocity constraint is active, a slight
asymmetry probably appears about midstance as for
the telescoping model.

Minimizing Cg costs. In limited numerical explora-
tions, minimizing Cg, including CAM and two other
instances of Cg with g(v) ¼ ȧ2 and (ȧ 2 0.5)2, gave rise
J. R. Soc. Interface (2011)
to inverted pendulum walking and running-like gaits at
low and high speeds, respectively.
9. SPRINGY TELESCOPING BIPED

Animals have compliant tendons in series with muscles.
Such tendons can substantially affect the energetics of
steady locomotion by storing work performed on it
and returning it later during the stance. Figure 1c is
perhaps the simplest biped model that has both a
muscle (telescoping actuator) and a tendon (linear
springs). The springs are linear, perfectly elastic and
have no damping.

As a practical matter, because the muscle length rate
and therefore the metabolic rate function depends
directly on the muscle force rate for these springy
bipeds (unlike the springless bipeds), the muscle force
rates are bounded during the optimizations. In general,
however, the force rate bounds were chosen to be so
large (220 � Ḟ � 20) that they are never taken advan-
tage of in most of the optimal solutions described below.
In this sense, it is as if no force rate bounds are used for
most of the optimizations below, unless noted other-
wise. Note on the other hand that most of the
optimizations with the springless bipeds (except for
one) involved no explicit force rate bounds.
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Minimizing work cost Cw. Given the same con-
straints including leg force capabilities, this springy
biped can perform every gait that can be performed
by the springless biped of figure 1a and vice versa. Of
particular interest are gaits that minimize the muscle
J. R. Soc. Interface (2011)
work cost Cw for the springy biped. Figure 14 shows
one such gait, with essentially zero work done by the
actuator. All the positive and negative work is done
by the series spring, while the series telescoping actua-
tor remains at constant length (isometric contraction)

http://rsif.royalsocietypublishing.org/


0.10

3

0 0.4 0.8

3

timetime leg length change

centre of mass 
motion

leg forcesmechanical power

minimizing Cw for springy telescoping biped, resulting in an asymmetric gait, with isometric muscle behaviour

leg lengths

le
g 

fo
rc

e

0 0.4 0.80 0.4 0.8
0.8

1.0

time

0

1

–1

whole leg
power

muscle
power

linear spring-like
leg behaviour

(a) (b) (c) (d) (e)

Figure 14. Springy telescoping biped: a gait that minimizes Cw for the springy telescoping model with V ¼ 1 and D ¼ 2.4. The
muscle work is essentially equal to zero. This gait may be somewhat reminiscent of skipping gaits [11].

0 1 2

0.9

1.0

leg length

double support

centre of mass
motion

time

1 20

1

leg force

time

0 1 2
−0.5

0

0.5

leg power

muscle power
almost zero

time

0 0.05

0

1

leg force

leg compression

mechanical power

linear spring-like
leg behaviour

minimizing Cw with springs produces walking with double support and isometric muscle behaviour

(a) (b) (c) (d) (e)

Figure 15. Walking with a springy telescoping model, with a relatively soft spring: a non-dimensional stiffness of 16, at V ¼ 0.39
and D ¼ 1.38, minimizing Cw with enforced left–right symmetry. The leg force rate is bounded: 220 � Ḟ � 20, but the bound is
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and provides a force that is at all times equal to the
spring’s. The stiffness of the spring was chosen to
be close to the ‘apparent stiffness’ of a human leg while
running (non-dimensional stiffness is 16), but the
actual value does not affect the qualitative conclusions,
as long as the muscle is capable of sufficiently high
forces and the stiffness is not too small ([12]; apparent
stiffness is defined as the slope of the leg force versus
leg compression curve and is not a true stiffness). The
bound on the leg force was 3, higher than that required
by the work-free gait—that is, this force bound is not
used by the optimal gait, just as the force rate bound
is also unused by the optimal gait.

The work-free gaits (Cw ¼ 0) of this biped are identi-
cal to the periodic gaits of the so-called spring-mass
biped model [10,12,54,55], which has only a telescoping
spring and no series actuator. For such unactuated
spring-mass models, it can be shown that for a given
speed, step length and spring stiffness within some
bounds, there usually exists (that is, it is non-excep-
tional to find) one or more isolated walking and/or
running gaits with left–right symmetry; see [12] and
[30] for counting arguments. For an example of one
such symmetric and muscle-work-free running gait,
see figure 16 (although it was not obtained by minimiz-
ing Cw as explained below). If one allows that the left
and the right stance phases need not be identical,
there is a one-parameter family of work-free gaits—
and therefore infinitely many equally optimal gaits—
for specified speed, stride length and spring stiffness.
The gait shown in figure 14 is one such asymmetric
J. R. Soc. Interface (2011)
gait. Note that the stance phases for this gait are
time-reversed versions of each other. The optimization
converged to an asymmetric gait perhaps because the
symmetric gait is a special case and asymmetry is gen-
eric (on the other hand, asymmetry seems ‘structurally
unstable’ as noted below).

Figure 15 shows an essentially muscle-work-free
walking gait for the springy telescoping biped; left–
right symmetry was imposed for this optimization for
simplicity and to emphasize similarity with human
walking. One obtains a qualitatively similar walking
gait—with double-humped leg force profile—for a
range of spring stiffnesses.

Minimize Cw with a force penalty. That work-
free gaits are obtained when Cw is minimized is to be
expected, and is not surprising. But what if there is a
strong cost penalty for muscle forces? Figure 16 shows
a running gait that minimizes a linear combination of
work cost Cw and a force cost CF2 : lCw þ (1 2 l)CF2,
for l ¼ 0.9. The muscle work performed is still essen-
tially equal to zero, despite the metabolic cost having
a substantial force cost. Thus, the same muscle-work-
free gait (figure 16) minimizes the cost for both l ¼ 1
and l ¼ 0.9. More generally, it appears that the work-
free gait is optimal for a range of l near 1, another
instance of the insensitivity of the optimum to changes
in the cost function. This particular insensitivity of the
optimum is explained in appendix D as being related to
the non-smoothness of the cost at the optimum at l ¼

0. Also, note that the gait in figure 16 corresponding to
l ¼ 0.9 is symmetric, while the optimal gait (figure 14)
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corresponding to l ¼ 1 was generically asymmetric. It
appears that the presence of the small force penalty
CF2 makes symmetry optimal, while Cw alone has
both symmetric and asymmetric optimal gaits.
Figure 17 shows the optimal running gait for l ¼

0.75, so that the weight on CF2 is higher than when
l ¼ 0.9. This gait does involve some muscle mechanical
work, even though work-free gaits exist, as demon-
strated by figures 14 and 16. Thus, it seems like the
work-free gaits are optimal for a range of l near 1,
but not optimal for lower l, when the force penalty
starts dominating the nature of the optimum.

Minimize Cg costs. As §6 would suggest, minimiz-
ing Cg also results in a zero Cw gait. This is true whether
or not even when there is a cost for isometric force
(force with no work). As before, I used a few different
g(v), including v2, (v 2 0.5)2 and the g(v) for CAM.
When Cg has a cost for isometric force, there is a
tendency toward left–right gait symmetry.

High stiffness limit. If the leg force is not expli-
citly constrained, work-free gaits exist for any high
stiffness of the linear tendon spring. At very high stiff-
nesses, the work-free running gait looks like the
impulsive running gait, with parabolic free flights inter-
rupted by brief bounces on the leg springs, with the
series telescoping actuator remaining isometric.

However, such work-free gaits involve high leg forces
and become infeasible when the leg forces or the leg
force rates are bounded. Indeed, these force and force
rate bounds become active constraints mainly in
the high tendon stiffness limit. When the force rates
are bounded and the optimal gaits are sought for
given speed and stride length, the high stiffness limit
J. R. Soc. Interface (2011)
approaches the limit of having no springs, namely the
springless telescoping biped. Figure 18 shows the opti-
mal walking gait at V ¼ 0.39 and D ¼ 1.38 when the
stiffness is high (k ¼ 500). Note that the gait is close
to inverted pendulum walking, which is optimal in the
absence of the spring, except made a little smoother
by the presence of the spring. At a higher speed (V ¼
1.2 and D ¼ 2.4), one obtains a running gait, in which
the maximum available force rates were used, analogous
to impulsive running.
10. SPRINGY KNEED BIPED

Similar to the springy telescoping biped, the springy
kneed biped has work-free gaits in which the muscle
remains exactly isometric throughout the stance
phase, while the springy tendon performs negative
work first (stretches) and positive work next (shortens),
redirecting the centre of mass velocity from down to up.
When there are no constraints on the forces and Cw is
minimized, the optimization converges to one of the
work-free gaits, corresponding to the specified speed
and stride length. As before, work-free gaits continue
to be optimal when the cost is slightly perturbed as
lCw þ (1 2 l)CF2 for a range of l near 1. Also, the
work-free gaits were found to be optimal for CAM and
for a couple of other Cg’s that were minimized. For
example, figure 19 shows the gait-minimizing CAM

(with the constant 0.5 added to its g(v)) and is essen-
tially muscle-work-free. It is interesting to note that
despite the kinematic singularity, the relation between
leg force and leg length change is not far from linear.
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When the stiffness of the series spring is sufficiently
high, the optimal gaits are qualitatively similar to
those of the springless kneed biped, given that the leg
forces are bounded in a manner that the work-free
gaits are now not feasible. As an aside, a substantially
different objective function of the form

Ð
M2(1 þ

ȧmuscle
2 ) gave essentially the same result, with a little

more muscle work but still a small fraction of the
total leg work.

Finally, when the cost is a pure function of the knee
moment and not dependent on the muscle-shortening
rate (for instance, CF2 ¼

Ð
M2dt), the springy kneed

model and its optimization reduces to that of the
springless model—as long as the force–velocity bound
is not very constraining at the optimum.

While the springy kneed biped is perhaps the most
realistic of all the bipeds considered in this paper, it is
the least examined and discussed. I hope to expand on
this model and its properties, especially as a function
of the tendon stiffness, in a sequel to this paper.
11. SWINGING A MASSIVE LEG

In most legged locomotion, the swinging of the legs is
not passive, but is powered by muscles and requires
J. R. Soc. Interface (2011)
energy. On the other hand, throughout this paper, I
have determined gaits that minimized only the so-
called stance cost, the cost of moving and supporting
the centre of mass by shortening and lengthening the
leg. The effect of having to swing massive legs can be
most naturally studied by endowing the model with
massive legs, whose movements can be controlled by
hip muscles and whose dynamics is coupled to the
motion of the hip.

An alternative to considering a model with massive
legs is to use an additive cost for swinging the leg
(e.g. [2,36]). This additive cost could be a simple alge-
braic function of the leg-swing angle ds and the leg-
swing time ts, the actual function being drawn from
simple theory or from leg-swing experiments [28,30].
Simple expressions for a leg-swing cost can be derived
by considering a rigid leg pivoting from an immovable
upper body, articulated by uniarticular muscles. For
swinging the leg faster than it would swing passively,
the strategy that minimizes Cw (or Cg in general) has
an accelerating impulse at the beginning of the swing
and a decelerating impulse at the end of the swing,
with the rest of the swing being essentially passive
(see appendix B). The strategy that minimizes CF2, as
would be relevant for legged robots, has the hip
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torque essentially decreasing linearly from an accelerat-
ing torque to a decelerating torque, in a manner that
satisfies the swing time and swing amplitude constraint.

These additive costs were used with appropriate pre-
factors in a couple of springless optimizations described
so far, but the optimal gait did not change qualitatively
when the speed and stride lengths were fixed. The leg-
swing cost does affect the duty factor by imposing a
penalty on too short a swing time, or conversely, too
great a double-support phase. But inverted pendulum
walking and impulsive running already have as great a
swing time as possible for the given type of gait (walk-
ing versus running), with all swing times being equal by
symmetry. Perhaps, this is the reason for the robustness
of such optima to such additive swing costs.

To be sure, the separation of the total cost into addi-
tively separable stance and swing costs is a
simplification. For instance, work performed to move
the hip around (here called the stance cost) can poten-
tially contribute to leg swing, making the separation
into stance and swing costs, as defined above, generally
impossible. But considering the leg swing as being
separable for the purposes of understanding the struc-
ture of the optimal solution is supported in some
cases by optimization results from a model with massive
legs. I considered a model similar to figure 1a, except for
legs having hip muscles and point-masses at their feet. I
found that the Cw-minimizing gait was inverted pendu-
lum walking with push-offs, heel-strikes and vaulting on
circular arcs. And the leg swing was accomplished by
hip impulses at the beginning and end of the swing.
Thus, the work optimal gait for a model with massive
legs consists of pasting together the optimal gait for a
model with massless legs and the optimal leg-swing
strategy with the legs considered in isolation. This
separability of the structure of the optimal gait is prob-
ably untrue for strange animals whose body mass is
dominated by their leg mass, especially if most of the
leg mass is close to the feet.
2If the surface was frictionless, the biped could glide without
performing work once motion is initiated somehow, say by pushing
off a wall.
12. DISCUSSION: GENERAL
OBSERVATIONS ABOUT THE OPTIMAL
LOCOMOTION

The following observations about the mechanics and
energetics of legged locomotion arise from the many cal-
culations detailed in this paper and other general
considerations. Many of these observations correspond
to salient features of human terrestrial locomotion
that the hypothesis of energy optimality is able to
explain.

1. Unavoidability of a minimum amount of leg
or joint work. In periodic legged locomotion on level
ground, the total mechanical energy of the animal is
the same at the beginning and the end of a gait
period. Despite such overall energy neutrality,
common experience and careful experiments tell us
that our legs perform substantial work when we walk
and run. Is such leg work unavoidable for legged
locomotion? If so, why?

One reason for performing work is dissipation. How-
ever, the springless telescoping biped considered here
J. R. Soc. Interface (2011)
had no dissipative mechanisms—no collisions and had
only no-slip frictional contact.2 By minimizing Cw for
the springless telescoping biped, I have shown—here
and in Srinivasan & Ruina [5]—that travelling at non-
infinitesimal speeds and step lengths requires non-infini-
tesimal positive leg work (that is, the optimal Cw does
not go to zero) even in the absence of frictional or colli-
sional dissipation, as long as the biped’s body is
constrained to never penetrate the ground. This mini-
mum required positive leg work, given the lack of
physical dissipation, must be exactly cancelled by the
performance of an equal amount of negative leg work
elsewhere during the gait.

Now imagine a more realistic biped—say, with more
body segments, especially legs, with masses—with fric-
tionless joints, slip-free frictional contact with the
ground and plastic mechanical collisions that can in
principle be avoided by stepping carefully. For such a
more realistic biped, I believe (based on unpublished
calculations and some arguments with additive leg-
swing costs) that this work-unavoidability claim is
even stronger: travelling at non-infinitesimal speeds
requires non-infinitesimal leg work, or more generally,
some joint work. That is, the condition of non-infinitesi-
mal step lengths from the previous paragraph is
unnecessary. See [56] for a related result for the special
case of unactuated downhill walking ‘passive dynamic’
robots.

A potential source of confusion might be that in real
human or robot walking, heel-strike collisions do appear
to be a big source of energy loss, which must be made
up by positive work elsewhere [4,57–59]. But this
heel-strike collisional loss may be interpreted as just
the animal’s way of performing negative work (which
is unavoidable), without using muscles and at the opti-
mal time, i.e. at the end of stance, as in our optimal
inverted pendulum walking gaits. In other words, if
the motion involves collisions, the biped has at least
that much energy to replace by positive work; and if
the biped avoids collisions, the legs have to do both
positive and negative work.

Two more clarifications are in order. First, the above
claims are with respect to ‘leg or joint work’, as opposed
to ‘actuator or muscle work’. Of course, locomotion is
possible in principle with just spring work—as in Geyer
et al. [10], O’Connor & Kuo [11] and Srinivasan &
Holmes [12], and the springy bipeds here—without the
series muscles performing work, but the spring work is
part of the unavoidable leg work. Second, it has been
conjectured by ([60]; also personal communication
2008) that it is possible to construct bipeds that have
legs with closed kinematic chains that can overcome
the unavoidability of leg work. My claim about the una-
voidability of leg work does not apply to these
unconventional bipeds; another such unconventional
biped is McGeer’s ‘silly wheel’ [61].

Roughly, the origins of this leg/joint work
unavoidability is related to the assumption of (non-
infinitesimal) finite gravity. In zero gravity, locomotion
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once begun—perhaps by pushing off a wall—can con-
tinue for ever with no additional leg work and
therefore no cost, coasting ad infinitum. In finite grav-
ity, at least for the simple biped models here with
non-infinitesimal step lengths, the only two ways of
going forward performing no work for extended periods
of time during a single step is to either lock the leg
joints (as in an inverted pendulum phase) or have
zero leg force (as in a flight phase). Both these phases
have a body trajectory that is strictly concave-down-
wards (d2y/dx2 , 0) because of the gravitational pull.
But a periodic trajectory has to be horizontal on aver-
age, so it appears that the leg needs to do some finite
amount of work to make the average value of d2y/dx2

equal zero. It remains an open mathematical problem
to prove this intuition rigorously for any reasonably
realistic class of bipeds with leg mass.

2. Optimality of inverted pendulum walking
and impulsive running. Inverted pendulum walking
and impulsive running are classic idealized descriptions
of human walking and running, going back at least half
a century [6,62]. Srinivasan & Ruina [5] showed that
these originally subjective idealizations have a more
objective existence as the work-minimizing gaits of the
same simple biped models (figure 1a,b). These classic
descriptions appear to minimize a vast number of cost
functions for the models in figure 1a,b and the stiff-
tendon limit of the models in figure 1c,d. For instance,
this optimality result has been extended to minimizing
a more general cost Cg, including the empirical cost
CAM. These gaits also appear optimal for a vastly differ-
ent cost function, namely the integral of squared knee
moment M2, if the biped has a knee.

3. Double-humped vertical ground reaction
force for walking. The vertical ground reaction force
(GRF) for human walking has a double-humped (bimo-
dal) profile. Somewhat analogous to this bimodal GRF,
idealized and impulsive inverted pendulum walking has
two large force spikes at the beginning and the end of
a stance phase, and much smaller forces during the pend-
ular part of the stance phase. When bounds are placed
on how fast the leg force can increase from zero, as
exists for a realistic muscle, the force spikes at the ends
of inverted pendulum walking become smoother
(figure 9), making the optimality of a bimodal GRF
more apparent. Somewhat interestingly, the Cg-optimal
gaits for the springy telescoping model also had a
double-humped vertical GRF, for a range of tendon
spring stiffnesses, from k ¼ 16 to 500, at least for the
specific V ¼ 0.39 considered in detail. But note that for
the springy models, work-free gaits with no flight
phase but with a unimodal vertical GRF are also possible
for some leg spring stiffnesses, similar to the ‘grounded
running’ gaits of cockroaches and some birds [11,12].

4. ‘Bang-coast-bang’ structure of the Cg-mini-
mizing gaits in springless models. The optimal
gaits for Cg for the springless models all had a simple
structure. In these gaits, the mechanical power was
close to zero for most of the time, either in pendular
phases with l̇ ¼ 0, or in free flight with F ¼ 0. Thus,
the gait is mostly energetically passive, with mechanical
work being performed in brief episodes of large
leg forces. Such a strategy is sometimes called
J. R. Soc. Interface (2011)
bang-coast-bang by optimal control theorists [63].
In [5], where this structure was discovered as a conse-
quence of minimizing Cw, it was surmised that
minimizing Cw ¼

Ð
Fl̇ resulted in solutions that had

large phases with F ¼ 0 or l̇ ¼ 0 perhaps because both
these phases had the cost identically zero. However,
such superficial speculation seems insufficiently general,
now that such optimal gait structure has been shown
to be a property of minimizing a wider class of functions
Cg, especially because the optimal structure is preserved
even when the minimum of g(v) is not at v ¼ 0. In appen-
dix B, I prove using elementary geometric arguments,
the optimality of this bang-coast-bang structure for a
problem related to swinging a leg through a given ampli-
tude. And indeed it is known that human leg swing
during walking has muscle activation mostly at the
beginning and the end of the swing [28]. It must be
pointed out that a true bang-coast-bang structure is, in
detail, at odds with common experience because it
seems like humans are not exerting muscles maximally
during slow-speed walking. Note also that while the simi-
larity of optimal behaviour for Cg and Cw has been
formally established in simple examples (§6 and appen-
dix B), I only considered special cases of Cg for the
locomotion optimization problems, which therefore
does not constitrue a complete proof that all Cg have
similar optima. Finally, using the maximum available
forces becomes non-optimal when there are force-
derivative bounds—when using the maximum available
force-derivative becomes optimal.

5. ‘Compliant’ walking and running gaits.
Human gaits are relatively smooth and involve largely
gradual growth of the various GRFs involved. Such
smoothness has allowed these gaits to be approximated
by ‘spring-mass models’, in which the leg is modelled as
a massless linear spring, such as recently elaborated by
a number of authors, notably [10] in the context of
human walking [11,12]. The many ‘passive’ gaits
obtained for these spring-mass models are all shown
here to be work-optimal (and more generally Cg-optimal)
in our springy actuated models.

On the other hand, when there are no springs in the
biped’s leg, the optimal gaits here were mostly non-
impulsive analogues of gaits with impulses. However,
these impulsive gaits do become smoother when
muscles are modelled more realistically. For instance,
a muscle’s force cannot rise to some finite value instan-
taneously, but can only do so gradually, as allowed by
its excitation–contraction dynamics. With such proper-
ties, the impulses get smoothed out, giving the gaits a
compliant appearance.

6. Linear spring-like leg behaviour. Another fea-
ture, especially of human running gaits, is the roughly
linear relationship between the leg force and leg com-
pression. Interestingly, this roughly linear spring-like
leg behaviour can be derived as a consequence of
energy optimality in three vastly different situations.
First, not surprisingly, the zero muscle work running
gait of the running springy telescoping biped, in
which the linear telescoping spring in series does all
the leg work, has an exactly linear-spring-like leg behav-
iour in this limit (figure 16). More interestingly, the
kneed springy biped also showed a linear-spring-like
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leg behaviour, but now only approximate because of the
nonlinearity imposed by the knee kinematics
(figure 19). At the other extreme, a springless telescop-
ing biped or a springy biped with very high stiffness,
now with a simple bound on the force rate or its deriva-
tives, might have running gaits with a roughly linear
spring-like leg behaviour—even in the absence of a
spring (figure 10). Thus, a roughly linear spring-like
leg behaviour is obtained in running whenever the leg
force increases and decreases gradually and is unimo-
dal—as in all these cases—independent of whether
there is an actual spring involved.

7. Walk-to-run transition. One common theory of
gait transition holds that animals switch to running
because inverted pendulum walking requires high cen-
tripetal accelerations at high speeds, not achievable
without tensional leg forces [2,30,64]. However, this
theory is unsatisfactory as it does not explain why ani-
mals do not use other no-flight-phase gaits at higher
speeds not requiring tensional forces, such as one with
a horizontal centre of mass trajectory [30]. Here, as
many others have also argued, it has been shown that
energetics provide a logically satisfying explanation for
gait transition.

For all the springless bipeds with the various cost
functions and assumptions considered here, it was ener-
getically optimal to transition from gaits with no flight
phase at low speeds (walking) to gaits with a flight
phase at higher speeds (running). This is a generaliz-
ation of the analogous result in Srinivasan & Ruina
[5]. In appendix C, I show why the gait transition hap-
pens at roughly the same speed-stride-length
boundaries for a few different Cg-like cost functions.

The walk-to-run transition curves have not been
explored well enough for different costs for the springy
bipeds in this paper. But note that the springy bipeds
can have work-free running at very slow speeds, if the
leg forces are not constrained ([21]; also see fig. 5 of
[12]). Therefore, a realistic walk-to-run transition is not
predicted for work-minimizing springy bipeds for a
range of not-too-high stiffnesses. But the walk–run tran-
sition claim does apply to springy bipeds with high
enough spring stiffnesses and bounded leg forces, as they
are similar to the springless bipeds. Also, Minetti &
Alexander [23] obtained plausible gait transitions with a
springy kneed model with CAM and leg mass.

8. Optimality of left–right symmetry. Human
and many other bipedal animal walking and running
gaits have a left–right symmetry. That is, their left
stance phases are at least approximately similar to
their right stance phases. This symmetry is probably
explained by energetic optimality given a bilaterally
symmetric body.

First, all of the optimal gaits computed here for the
springless bipeds for various costs had their left stance
phases essentially identical to their right stance
phases, despite allowing for asymmetry. In appendix
E, assuming small step lengths, it is shown that a sym-
metric inverted pendulum walking gait always requires
less work than an inverted pendulum gait with asym-
metric steps. On the other hand, I did find that the
cost landscape for Cw was relatively flat near the gait
transition for the springless telescoping biped, so that
J. R. Soc. Interface (2011)
asymmetric gaits are close to but not quite optimal
(suggesting that small perturbations of the model
might make asymmetry optimal sometimes).

For springy bipeds with sufficiently compliant ten-
dons, when muscle work Cw was minimized, it was
found that both symmetric and asymmetric gaits
(such as skipping; figure 14) were optimal. However,
when the metabolic cost function is slightly modified
with a cost for isometric force, it was often found that
the flatness of the landscape was lost, the asymmetric
gaits became non-optimal and the symmetric gait was
picked out often as the optimal gait.

9. Time-reversal symmetry in stance phases.
Many, but not all, of the optimal gaits discussed here
had an additional symmetry property. Their stance
phases had an approximate or an exact time-reversal
symmetry. That is, these gaits look the same run for-
ward or backward in time. Obviously, human gaits do
not have this symmetry exactly, but they are not far
away, especially if one looks at the GRFs and the
centre of mass motion; it is this approximate symmetry
that lets approximation of human running by the sym-
metric gaits of spring-mass models [9,10,12]. This
approximate time-reversal symmetry in bipedal walking
is therefore probably a consequence of energy optimal-
ity. Interestingly, note that this symmetry appears
approximately true even when g(v) in Cg is far from
an even function. Also, the optimal gaits for the spring-
less models have another time-reversal symmetry, not
demonstrated here: the gait that minimizes the cost
Cg with g(v) is the time-reversed version of the gait
that minimizes the cost Cg with g(2v), assuming the
force–velocity bound is not active, neglected or also
reversed.

Finally, considering models with extended as
opposed to point feet will modify these time-reversal
symmetries somewhat.

10. Horizontal-hip-trajectory walking. It is
sometimes argued [62] that horizontal-hip-trajectory
walking (sometimes called ‘level walking’; [5]) might
reduce work requirements from the legs because it was
thought that muscle mechanical work was required
mainly to lift and lower the centre of mass. Here,
when I minimized the work costs, I never discovered
this horizontal-hip-trajectory gait as an optimum—
this horizontal-hip-trajectory gait requires more posi-
tive leg work than the optimal gaits, as also
confirmed by experiments for metabolic costs [65,66].
See [30,67] and [5] for simple cost expressions (Cw) for
such level walking gaits; for constant speed level walk-
ing with double support, Cw ¼ D2/24H; for non-
constant speed level walking with no double support,
Cw ¼ D2/32H. Comparing these cost expressions with
Cw for inverted pendulum walking (approx. V2D2/
32), pendular running and impulsive running (approx.
D2/32V2) computed accurately using careful numerics
show that level walking never minimizes Cw [5,30].
Such horizontal-hip-trajectory gaits are non-optimal
for most other metabolic cost functions considered
here as well.

11. Walking on relatively straight legs. Almost
all the optimal gaits obtained here make use of essen-
tially all the maximum leg length available to the
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biped, at some part of the stance phase. For instance, in
inverted pendulum walking, pendular running, impul-
sive running and their non-impulsive analogues, the
leg is almost its maximum possible length for the
whole of the stance phase. In the more compliant opti-
mal gaits of the springy models, especially with a cost
for isometric force, the leg length is maximal or close
to maximal at the beginning and the end of stance
phase. Classically, it has been argued that this tendency
for straight legs, especially in human walking, is to
reduce the muscle force requirements by taking the
best advantage of the knee’s kinematic singularity.
However, it has been shown here (generalizing [5])
that even without a knee and even without a cost for
force, it is useful to walk and run on straight legs for
the springless models while minimizing a variety of
metabolic costs. This trend is also clear from simple
cost expressions for these idealized gaits.

12. Optimality of double support in walking.
Minimizing Cw or Cg for springless bipeds at low
speeds appears to produce walking gaits with no
double support. That is, in these walking gaits, the
push-off is entirely before the heel-strike with no overlap.
This absence of double support appears to be true even
when there is a not-too-low bound on the maximum
leg force (say about 2–3). However, double support
appears to become optimal when one has a bound on
the rate of leg force (figure 9). This result shows that
the optimality of push-off before heel-strike, advocated
by some [3,4] is true for slow walking only when the leg
forces can increase arbitrarily fast, as in a collisional
impulse. Another reason to have a double support is if
there is a strong cost on the leg force (say, CF2) without
a knee singularity to reduce the muscle force—as for
instance, is the case when the work is performed by the
ankle joint. Finally, note that walking gaits with
double support were also obtained as being optimal for
the springy bipeds with substantial tendon compliance,
while minimizing Cg-like costs.

13. Why might animals look like they minimize
work instead of metabolic cost? Some animals have
long compliant tendons in series with some of their
muscles [40], so that during running, these tendons
account for a large fraction of the positive and negative
work of the musculo-tendon complex, while the muscle
itself remains close to isometric [68,69]. This strategy is
clearly muscle-work minimizing, at least for the muscles
that are close to isometric. Even other animals appear
to take advantage of the presence of tendons springs
to reduce the amount of muscle mechanical work
required [31,70–72]. Such running is literally close to
the behavioural assumptions of the spring-mass
model, although it is not clear if all major leg muscles
are close to isometric (the proximal ones might not
be). In any case, why care about ‘muscle work’ instead
of metabolic cost? Here, it has been demonstrated that
minimizing Cw is similar to minimizing a number of
other costs. Thus, if animals appear to minimize work,
it is probably because minimizing whatever is impor-
tant to them (e.g. metabolic cost) ‘looks like’
minimizing work. Note again that minimizing work
can be optimal even with substantial costs for
isometric force.
J. R. Soc. Interface (2011)
14. Optimal robot gaits and biomimicry. While
other researchers, especially roboticists [19,48,49,73]
have determined the optimal gaits of models more com-
plex than, but closely related to, the kneed springless
model, it appears not to have been noted that a particu-
lar simplification of their models yields the classic
inverted pendulum model and impulsive running as
the optimum. (Note again that the M2 cost CF2 is a
simple model of idealized motor electrical cost appropri-
ate for robots). This similarity of idealized human gaits
and idealized robot optimal gaits allows robots based on
a blind mimicry of some aspects of human walking to be
energetically economical even though the human meta-
bolic cost function could be very different from a robot’s
electrical cost function. There is, of course, no a priori
reason to expect that what is optimal for an animal
would be optimal for a robot, but sometimes there
might be coincidences such as those seen here. Note
that I am not claiming that the corresponding optimal
gaits are identical at any given [V, D], but only that a
similar set of gaits seem optimal overall.

Thus, one could perhaps conjecture that the under-
actuated level-ground walking robots [59], inspired by
the so-called passive dynamic robots, inherit their
energy economy from their imitation of energy optimal
gaits here, which have large energetically passive
phases. Of course, in general, having many largely pas-
sive phases does not imply energy economy (even
though energy economy has been equated with passiv-
ity in the literature); this gait structure just happens
to be good for the many costs discussed here.

15. When are springs energetically useful?
Whether or not a spring in series with a muscle can
be energetically useful depends on the stiffness of the
spring, the maximum muscle forces, the time scale of
the stance phase and the properties of the metabolic
cost function. Springs in series with muscles are useful
for reducing the muscle work requirements during
legged locomotion. But if the muscle forces are
bounded, then the spring in series can store only as
much energy as this maximum muscle force lets it. So
a spring that is much too stiff can store little energy
in this case; so a sufficiently stiff spring would be indis-
tinguishable from having no spring at all. At the other
extreme, a spring with very low stiffness in series with
the muscle can also be energetically expensive. Imagine
replacing your tendons with a very thin rubber band;
clearly such low stiffness would make locomotion at
normal speeds essentially infeasible and if feasible,
expensive (see [30] for a related discussion about leg
swing; also [32]). Thus, given a motion with some
time scale, it is likely that there is a range of
optimal tendon stiffnesses for reducing muscle work
requirements [42].

Note that springs do not only help reduce work
requirements. Springs are useful in the reduction of
the more general metabolic cost Cg as well. Even more
generally, it seems likely that springs help minimize
metabolic cost when the metabolic cost function
depends strongly on the muscle contraction speed. On
the other hand, if the cost were a pure function of
muscle force, for instance, CF2, then clearly springs
can have no direct effect on the cost—so the springy
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bipeds are the same as the springless bipeds. This
means that robots with electrical motors with perfect
regeneration might be less amenable to cost reduction
using springs in series with the motors. This is also a cri-
tique of the use of CF2 or other pure functions of muscle
force in predictive biomechanics optimizations—all
such optimizations should find that the presence of
springs have only little or no direct effect in reducing
the cost (springs may have a small indirect effect on
the coordination through the muscle force–velocity
relation).

16. What dominates cost at an optimum?
First, consider a simple concrete example. Consider
a function f that is a weighted sum of two smooth
functions: f(x) ¼ lf1(x) þ (1 2 l)f2(x), where f1(x) ¼
(x 2 a)2 and f2(x) ¼ (x 2 b)2. The optimal solution
x* ¼la þ (1 2 l)b. By changing l from 0 to 1, the
optimum of f(x) shifts from x* ¼ b, the minimum of
f2, to x* ¼ a, the minimum of f1. It can be shown
that when l � 1, even though x* is determined by
minimizing f1, the cost f is dominated by the (1 2

l)f2 term. On the other hand, when l � 0, even
though x* is determined by minimizing f2, the cost
f is dominated by the lf1 term. This overall result
is generically true for a weighted sum of any two
smooth functions.

Thus, the part of the cost function that mostly deter-
mines the optimum might be only a small part of the
optimal cost. In other words, just because something
costs you a lot at the optimum does not mean that
this aspect of the cost is the most important determi-
nant of the optimum strategy. Rather, it might well
be the less important determinant of the optimum.
The more important determinant might have a much
smaller fraction at the optimum.

Thus, for instance, it might be possible for the cost of
locomotion to be largely explained by the cost of iso-
metric force (if it is, as sometimes argued; [74,75]),
while the optimal gait is largely explained by the mini-
mization of work, say. This feature is observed in many
of the zero muscle work Cg-optimal gaits of the springy
bipeds here.

17. Insensitivity to objective function. As noted
in the introduction, one goal of research on legged loco-
motion is to determine a hopefully simple function that
when minimized under appropriate task constraints for
a simple-enough biped model predicts the observed
locomotor behaviour [26]. In this paper, I have shown
that the optimal gait is insensitive to some objective
function perturbations. See appendix D for one simple
explanation for such insensitivity involving a non-
smooth minimum. Insensitivity of optima to the
objective functions means that it may be harder to
infer a unique objective function purely from
the observed behaviour alone (if we cannot measure the
cost function as well). On the other hand, once the
insensitivity is better understood (or even if not),
the insensitivity helps by letting us make good predictions
with a relatively poor model of the objective function.

18. What about the predicted metabolic costs?
In the models here and in the following discussion, I do
not consider the cost of swinging the legs, which is
thought to be a small fraction (perhaps about one-
J. R. Soc. Interface (2011)
third) of the total cost [76]. In [5] and [30], I plotted cer-
tain aspects of the optimal work costs Cw for the
springless biped models, and noted that the metabolic
cost values estimated by Cw are within a factor of 2 of
the metabolic cost estimated from VO2 experiments
(e.g. figs 2.4 and 2.7 in [30] assuming b1 ¼ 4 and b2 ¼

0.8). The leg work in these optimal gaits are also close
to the so-called centre of mass work (sometimes called
‘external work’) computed from the animal’s GRFs.
Without changing the optimal gaits at all, much
better agreement with metabolic data could presumably
be achieved by considering the more general cost Cg and
choosing g(v) appropriately for a springless biped,
whether kneed or telescoping. This would be somewhat
unsatisfactory as it is known that springs do have a role
to play in the energetics.

On the other hand, the springy biped models, while
producing gaits that are compliant and having more rea-
listic looking GRFs, suffer from too low an estimate of
the metabolic cost, especially if the series spring is suffi-
ciently compliant and is performing all the leg work. In
this work-free limit, Cw ¼ 0 and Cg is mostly due to
the integral of the muscle force. A slightly more realistic
model with knees, tendon springs and leg mass owing to
Minetti and Alexander also suffers from a similar under-
estimation of the metabolic cost while using CAM (see
fig. 4d in [23]). While this cost underestimation might
potentially be fixed by manipulating g(v), this manipu-
lation might have to be substantially at odds with the
data informing the CAM cost. Also, the perfectly
muscle-work-free optimal gait structure is probably unli-
kely to be a good approximation anyway, as it is thought
that only about 50 per cent of the leg work is due to the
springs in the legs and the rest is due to muscle work [53].
Overall, I suspect that a generalization of the metabolic
cost model Cg to something that looks like, say,Ð
f(F)g(v) dt or

Ð
h(F,v) dt might be indicated, or perhaps

as others have suggested, a cost function that includes
force derivatives.

Summary. In this paper, I have explored many
objective functions, many biped models, under many
situations. This exploration resulted in many qualitat-
ive results, which I suspect apply more generally than
just for the situations considered and described here. I
have only explored a small section of a very large
number of possible simple models, and even within
those simple models, only specific parameter combi-
nations have been considered. As the space of possible
bipeds is explored more carefully and more exhaus-
tively, it is likely to be found that some of the claims
and conclusions here are insufficiently general and
must be revised and subsumed under more general
results. A more careful and exhaustive analysis of each
of the four biped models in this article is indicated
and might provide a foundation for the construction
and understanding of more complex and more realistic
models. Also, in this article, I mostly derive the optimal
gaits using numerical optimization and they are some-
times buttressed by analytical reasoning where
appropriate. It is likely that many of these optimization
calculations can be understood a bit better by attempt-
ing proofs of optimality, perhaps in simplified cases
such as in [29].
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In summary, while no single model examined here
has all the features that we would like of a predictive
model of steady legged locomotion, it has been shown
here that a large number of qualitative features of
human bipedal locomotion can be explained by the
hypothesis of energy optimality, even when applied to
only relatively simple biped models. It seems likely
that a model not much more complex than the ones
presented here could be much more successful.
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APPENDIX A. MINIMIZING F2 COSTS

Consider two actuators in parallel, exerting forces F1

and F2, respectively. Say that it is required that the
two forces sum to F0. Then, F1 ¼ F2 ¼ F0/2 minimizes
F1

2 þ F2
2. Also, for a single actuator, if you want to pro-

duce an average force F while minimizing the integral of
F2, it is best to have a constant force rather an
oscillatory force.

The above observation is implicated in the following:
especially for small step lengths when the leg forces are
close to vertical, the CF2 optimal gait for the telescoping
biped had a lot of double support; in fact, most of the
stance phase tended to be double support. This is
because a given force F over time T, produced by one
leg roughly costs F2T and when produced by two legs
costs 2 � (F/2)2 T ¼ F2T/2. For higher speeds and
step lengths, a running-like gait with flight phases
and single-stance phases appears optimal (figure 8).
APPENDIX B. MINIMIZING CG FOR A
SIMPLE TASK RESEMBLING SWINGING A
LEG

Here I describe a simple task analogous to leg swing [30]
for which it can be proved that minimizing Cg with a
positive g(v) is identical to minimizing Cw.

Consider the mass m on a frictionless surface, whose
horizontal position is denoted x (figure 20a). Say the
task is to move the mass through a distance xmax in
time tmax; in effect, an average speed of vavg ¼ xmax/
tmax is required. The mass must start at rest and end
at rest (ẋ ¼ 0). There is one actuator, able to apply
forces F(t) of any magnitude.

What strategy minimizes Cw for this task? I will
show that the best strategy is to apply an impulse
initially, so that the mass is immediately accelerated
to a speed vavg ¼ xmax/tmax, let the mass coast the dis-
tance xmax over time tmax, and then decelerate to zero
speed instantaneously at time tmax. The positive work
J. R. Soc. Interface (2011)
required for this bang-coast-bang strategy is mvavg
2 /2.

A short outline of a proof of optimality follows. This
claimed optimal strategy uses a constant forward vel-
ocity equal to the required average velocity vavg over
essentially the whole time duration. An alternative
strategy, with some finite duration spent at velocities
less than vavg, will necessarily also have a duration in
which the mass travels faster than vavg, to satisfy the
average velocity constraint. This means that the mass
has, at some point during its motion, an energy greater
than mvavg

2 /2. This implies that the minimum required
positive work (¼

Ð
Fv dt with F . 0 and v . 0) for such

an alternative strategy must be greater than mvavg
2 /2,

proving the optimality of the impulsive strategy,
which only requires mvavg

2 /2. Figure 20b shows the
path OABC taken by the optimal strategy in the x 2

ẋ phase plane. See [30] and [29] for similar arguments
in similar contexts.

What about minimizing Cg? It can be shown that
exactly the same bang-coast-bang strategy, the path
OABC of figure 20b, also minimizes Cg with a positive
g(v) (where v ¼ ẋ) for this task. The proof is the same
as above, except now ‘energy’ in the above proof is
replaced with the quantity G(v) ¼

Ð
0
v g(v0) dv0, which

is monotonically increasing with v when g(v) is positive.
Note that G(v) equals the cost Cg when F . 0 and v .

0, and, therefore, has the same status that positive work
has to Cw: Cg ¼

Ð
Fg(v) dt ¼

Ð
v̇g(v) dt ¼

Ð
g(v) dv. The

constant mechanical energy contours in figure 20b now
become constant G(v) contours, albeit with different
spacing.

The similarity of the optimal strategies for the costs
Cw and the more general Cg for this simple task foresha-
dows the similarity of the optimal walking and running
strategies for the springless telescoping model. The
sameness only requires that G(v) be strictly increasing,
which is assured for positive g(v). Convexity of g(v),
which was used in §6, was not required for the above
proof. Also, in the above proofs, it was implicitly
assumed that F could be positive or negative; it may
be more physically plausible to have two muscles, one
for acceleration (agonist) and another for deceleration
(antagonist), but both the optimal strategy and the
proof arguments would be essentially identical.
APPENDIX C. A GAIT-TRANSITION
THEORY FOR THE SPRINGLESS BIPEDS

In this section, I present simple expressions for the cost
of the optimal gaits for the springless telescoping biped,
minimizing a Cg-like cost—namely for inverted pendu-
lum walking and impulsive running. Using these
simple expressions, it is possible to determine when
gait transitions should occur. The cost of transport is
used to choose between different gaits; the cost of trans-
port ct is the non-dimensional quantity defined as the
metabolic cost per unit weight and distance travelled.
For simplicity, the arguments below about gait tran-
sitions assume that the gait choice is only between
inverted pendulum walking and impulsive running
gaits, and show that transition between just these
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Figure 20. (a) The task is to move the mass from x ¼ 0 to xmax in time tmax, starting and ending at rest. (b) The optimal strategy is
OABC, OA is instantaneous, AB is constant speed and BC is instantaneous. The series of horizontal lines are the energy con-
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Figure 21. Robustness of a non-smooth minimum. The func-
tion fl(x) ¼ jxj þ l(x 2 1)2 is shown for a sequence of l from
0 to 1. The minima of fl(x) (shown as little circles) is remains
exactly at x ¼ 0 for l ¼ 0 to 0.5, and is greater than zero for
l . 0.5.
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gaits should happen at roughly the same [V, D] bound-
aries for some different Cg’s for small step lengths.

Impulses for inverted pendulum walking and
impulsive running. Especially for Cw, all the cost is
incurred at the impulses: the heel-strike and push-off
impulses for pendular walking and running, and the
single pseudo-elastic impulse for impulsive running.
The pendular phases of these gaits have no cost, as
these phases involve no work, and in the case of the
kneed biped, requires no knee moment. So for complete-
ness, I recall the impulse magnitudes for gaits inverted
pendulum walking and impulsive running; see [30] and
[4] for details.

For inverted pendular walking (and pendular run-
ning), the push-off and the heel-strike impulses are
each equal to vc ¼ v2 tanu, where v2 is the velocity
magnitude just before push-off, u is the leg angle with
vertical and tan u ¼ D=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� D2=16

p
. The speed v2

can be determined by numerical simulation or using
approximations. A simple approximation, applicable
for small D and not-too-small V is v2 � V, so that
vc � VD/4.

For impulsive running, the single vertical impulse
can be broken up into a negative work impulse and a
positive work impulse. The magnitude of each of these
impulses is equal to the vertical velocity just before
impact: vc ¼ T/4 ¼ D/4V. There are no approximations
in this expression. Note again that in this paper, D
stands for stride length, whereas in Srinivasan &
Ruina [5] and Srinivasan [30], D stands for step length.

Work cost Cw. For both the springless telescoping
biped and the kneed biped, it can be shown that the
cost of transport ct for a positive work cost (Cw with
b1 ¼ 1 and b2 ¼ 0) is given by:

ct ¼
Cw

D
¼ v2

c

2D
: ðC 1Þ

where vc is the non-dimensional magnitude of the push-
off impulse [4,30]. Substituting the values for vc derived
in the previous paragraphs, ct � V2D/32 for inverted
pendulum walking. For impulsive running, ct ¼ D/
32V2. If the choice were restricted to just between
these two gaits, a comparison of these costs shows
that walking is better for V , 1 and running for V .

1. This is a small-D approximation. The exact phase
boundaries are in Srinivasan [30] and Srinivasan &
J. R. Soc. Interface (2011)
Ruina [5]. The key observation here is that the cost
expression (equation (C 1)) is a monotonic function of
vc for a given D, and therefore, the gait transitions
happen when the vc for one gait becomes larger than
another. Such observations apply to the springless
kneed biped as well.

Convex cost Cg. The Cg cost of the positive work
impulse is given by

Ð
0
vc Fg(v) dt ¼

Ð
0
vc v̇g(v) dt ¼Ð

0
vcg(v) dv ¼ G(vc) 2 G(0). The negative work impulse

has a cost equal to G(0) 2 G(2vc). The cost of the
pendular phase is equal to g(0)tpendular, where tpendular

is the time spent in the pendular phase. The cost of
transport will then be ct ¼ [G(vc) 2 G(2vc) þ
g(0)tpendular]/D. If g(0) were zero, the cost ct would be
a monotonic function of vc for a given D and, therefore,
the gait transition boundaries will be exactly the same
as in the earlier two cases. When g(0) is not equal to
zero, the gait transition boundaries are likely to be a
little different from the earlier cases. Note that g(0)
for CAM is relatively close to zero (figure 2c).
APPENDIX D. INSENSITIVITY OF WORK
MINIMA TO AN ADDITIVE CF2 COST

Consider the non-smooth function fl(x)¼ jxj þ l(x 2 1)2.
For l¼ 0, f(x)¼ jxj and is minimized at x¼ 0. Figure 21

http://rsif.royalsocietypublishing.org/
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Figure 22. Idealized asymmetric gaits. (a) Asymmetric inverted pendulum walking, with two unequal step lengths in a stride. The
leg length is constant during most of the stance phase, equal to the maximum possible leg length, except for infinitesimal exten-
sions and contractions during push-off and heel-strike impulses. (b) Asymmetric impulsive running gait, with two unequal steps
in a stride.
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shows fl for a sequence of l. The minimum remains
exactly at x¼ 0 for a range of lambda around l¼ 0
(a‘dead zone’) and then changes gradually from x¼ 0.

It can be shown that dead-zone behaviour for mini-
mum around l ¼ 0 is generic for functions of the form
fl(x)¼ f1(x) þ lf2(x) (x [ Rn) when the f1(x) has a
‘non-smooth minimum’ at x ¼ a such that the directional
derivative of f1(x) along every feasible direction is positive
(bounded away from zero). The proof is elementary: if the
directional derivatives of f2(x) at x¼ a are bounded, the
directional derivatives of fl(x) at x ¼ a remain positive
for a range of l around x ¼ 0, thus making x ¼ a
remain a minimum for this range. The set of feasible
directions is assumed independent of l.

Arguments similar to these can presumably be used to
show the robustness of optimality of the zero work strat-
egies to small cost function perturbations of the form
l
Ð
F2 dt for the springy bipeds. For a given speed, stride

length and spring stiffness, there is only one (locally iso-
lated) symmetric work-free gait. The work cost for this
gait probably satisfies the conditions above: that any
small perturbation to this gait, satisfying the speed and
stride length constraints, will result in a small work cost
whose size is the same order as the perturbation to the
gait (say measured by changes in leg forces), thus showing
the positivity of the directional derivatives in every
direction, as required by the above proof of insensitivity.
APPENDIX E. OPTIMALITY OF
SYMMETRIC WALKING

Consider the asymmetric walking gait shown in
figure 22a, in which the two steps that make up a
stride are unequal. The two push-offs in a stride are
accomplished with different leg orientations, namely
with leg angles u1 and u2 as shown in the figure. For
small leg angles, it can be shown that the positive
work performed during the push-off scales like V2u2/2
(see appendix C and [30]). Given ui � Di/2, the total
cost (positive work) over the two steps (one stride)
would be V2(D1

2 þ D2
2)/8. Given D1 þ D2 ¼ D, minimiz-

ing the cost for a given V and D is like minimizing D1
2 þ

D2
2, accomplished by setting D1 ¼ D2 ¼ D/2. The

reasoning is identical to that in appendix A. Thus, sym-
metric inverted pendulum walking is best among all
inverted pendulum walking gaits. This proof assumes
small leg angles, but the claim is generally true.
J. R. Soc. Interface (2011)
Similarly, it can be shown that symmetric impulsive
running, with equally spaced vertical impulses, is better
than the asymmetric impulsive running gait in
figure 22b. Because the two costs (for symmetric and
asymmetric impulsive running gaits) are the same up
to leading order in D [4], the proof of optimality
would be somewhat longer than the above proof for
walking. But see [30] for a demonstration of the claim
that a symmetric impulsive running gait is better
than an asymmetric running gait in which the two
impulses are close together, analogous to skipping.
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1 Numerical solution of the gait optimization problems

Overview. The central “gait optimization problem” in this paper is to obtain the periodic gait with a specified
average horizontal speed V and specified stride length D that minimizes the metabolic cost C over the gait
period, subject to other constraints. The various biped models considered here are all capable of an infinite
variety of gaits. In fact, given the same leg force constraints (and other constraints as appropriate), the four
bipeds are capable of the same set of gait trajectories. This set of possible gaits is an infinite dimensional
space. Any particular gait is completely described by specifying the two leg forces as functions of time F1,2(t)
(or equivalently the time derivative of the leg forces with their starting values), the initial state of the biped
(position and velocity at, say, the beginning of the stride), the duration, timing, and sequences of the single
stance, double stance, and flight phases, and the horizontal foot positions during the stance phases.

The infinite-dimensional optimization problem is made tractable by considering only a finite-dimensional
gait space, obtained by describing the leg forces using finitely many parameters, reducing the “trajectory optimal
control problem” [6] to a “nonlinear programming problem” [3, 4]. The computational methods used here for
the solution of the gait optimization problem are closely related to those described in [5, 4], but are modified
as described below to handle the more general and sometimes more numerically ill-conditioned calculations
attempted here.

Definition: the “primary structure” of a gait. It is convenient to sub-divide the space of all possible
bipedal gaits based on the sequence of single stance phases, flight phases, and double stance phases that
characterizes a gait. I introduce a new notation here. A simple sequence of letters is used to characterize each
gait structure, where f denotes a flight phase, si denotes the single stance phase of the i-th leg, and d denotes a
double stance phase. For instance, a human running gait can be denoted by the sequence [ s1 f s2 f ]; that is, a
single stance phase, followed by a flight phase, another single stance phase, and again a flight phase. A human
walking gait with double stance phases can be denoted by the sequence [ s1 d s2 d ]. Any cyclic permutation
of a sequence also represents the same gait. Thus, for instance, human running can also be described by the
sequences [ f s2 f s1 ], [ s2 f s1 f ], and so on. I call such sequences describing the gait as the “primary
structure of the gait,” in analogy to the term’s usage in describing protein structure. One can equivalently
use the sequence of footfalls and foot-liftoffs to specify such primary gait structures.

Discrete and continuous variables. The primary structure of a gait is a discrete-valued and not a continuous-
valued variable, while all other variables describing a gait — such as forces, initial conditions, and durations
of stance and flight phases — are continuous-valued. Because it is difficult to optimize over a space which
has a mixture of discrete and continuous valued variables (such problems called “mixed integer programming”
problems in the optimization literature), the optimization problem here is solved in two stages. For each V
and D considered, I loop over many of the possible primary structures. For each primary structure, I find the
optimum gait from among gaits having that primary structure. Having found the optimal gait for each primary
structure, the gait with the least cost is picked from these finitely many optimal gaits. Ideally, one should loop
over all possible primary structures.
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Relevant primary structures for a biped. In this paper, I only consider gaits in which each leg has at
most one stance phase over a single stride period. This is quite a general class of gaits. For the purposes of
optimization, only three different gait structures having this property are considered, namely [ s1 f s2 f ] (e.g.,
running), [ s1 d s2 d ] (e.g., walking with double stance) and [ f s1 d s2 ] (e.g., unilateral skipping, also called
bipedal galloping, with double stance). Many other sequences with at most one stance phase per leg per stride
can be obtained as special cases of these three. For instance, a gait with two single stances [ s1 s2 ] , but with
no double stances or flight phases can be obtained as a limit of [ s1 f s2 f ] with vanishing flight phases, as a
limit of [ s1 d s2 d ] with two vanishing double stances, or as a limit of [ f s1 d s2 ] with vanishing flight and
double stance phases. Note however, that there are not just three, but six possible primary gait structures for a
biped in which each leg has at most one stance phase during a gait cycle. The other three not considered here
are [ s1 d s1 f ], [ s2 d s1 f ], and [ s2 d s2 f ]. If the two legs are assumed interchangeably symmetric, two of
these three primary structures not considered are the same as two considered here. The combinatorics of the
primary gait structures of an N -legged animal will be considered in some detail in a separate article.

1.1 Spring-less telescoping biped

In this section, I describe the numerical methods in the context of the spring-less telescoping biped in detail.
The optimization for the other bipeds or other conditions require some minor modifications, described in brief
in the subsequent sections.

Continuous variables defining the gait. First assume one of the primary gait structures, say, [ s1 f s2 f ].
Any gait with this primary structure is then parameterized with the following variables: the time duration of
the two stance phases ts1 and ts2, the period of the two flight phases tf1 and tf2, the initial conditions for the
two stance phases (x10, ẋ10, y10, ẏ10) and (x20, ẋ20, y20, ẏ20), the leg forces over the two stance phases F1(t) and
F2(t) respectively, and the ground contact positions xc1 and xc2 of the two feet during the two stance phases.
The leg force functions are parameterized as being piecewise linear and continuous, defined on an evenly spaced
time-grid over each stance phase-i, where N is the number of grid-points for each stance phase. The force values
at the grid points defining the piecewise-linear force functions are denoted F1j and F2j , where j = 1, 2, . . . N .
Thus, a gait is defined by specifying Z = (ts1, ts2, tf1, tf2, x10, ẋ10, y10, ẏ10, x20, ẋ20, y20, ẏ20, F1j , F2j , xc1, xc2), a
total of 2N + 14 variables. This is just a convenient representation of the gait, one that enables the simulation
of the first stance phase independently of the second.

Evaluating dynamics and metabolic cost. For any given value of Z, the equations of motion given in the
main article can be integrated to obtain the center of mass position (x(t), y(t)) over the two stance phases. The
center of mass motion (x(t), y(t)) over the flight phases are obtained by integrating the flight equations starting
from the final state of the corresponding stance phases. The “objective function” which is the metabolic cost is
also evaluated during the integrations over the stance phases, by adding a differential equation for the cost C
(i.e., Ċ = . . .). To maintain high accuracy, integration of the differential equation is always done from grid-point
to grid-point. This is because the right hand side of the differential equation is non-smooth at the grid points
(because of piecewise linear forces). Most smooth ODE integration methods assume the existence of higher
derivatives. They would commit large errors and would likely be unacceptably noisy (that is, inconsistent [1])
if integrated over a non-smoothness. I use MATLAB’s variable step-size integration function ode45 with a relative
error tolerance of about 10−10, so that the derivative estimates are good. I chose a variable step-size integrator,
as opposed to a noise-free constant step-size integrator [1], so that the integration is reasonably stable in the
presence of some numerical stiffness or near-non-smoothness. Care is taken to make the optimization problem,
namely the objective function and the constraints, sufficiently smooth while remaining close to the original
optimization problem. Some smoothing techniques are outlined later in this article. Smoothness is critical to
reliable convergence of the optimization iterations, because the optimization algorithms used assume continuity
of second derivatives. When there is true or near- non-smoothness, the optimizer might either fail to converge
(and know that it has failed) or halt at a non-optimum, fooled by poor derivative estimates.

Linear and nonlinear constraints. Z cannot assume arbitrary values, but is restricted by various equality
and inequality constraints, some linear and some nonlinear in Z, as listed below. The nonlinear constraint
violations are evaluated after the integrations of the equations of motion.
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• A leg length inequality constraint li ≤ 1 is enforced at finitely many grid points within the respective
stance phases. The grid used to enforce such path constraints is usually taken to be denser than the
control grid N , usually adding one or more grid points in between the control grid points.

• The periodicity constraint requires that the state at the end of the second flight phase is equal to the state at
the beginning of the first stance phase except for an horizontal translation of D in x: x(ts1+tf1+ts2+tf2) =
x10 +D, ẋ(ts1 + tf1 + ts2 + tf2) = ẋ10, y(ts1 + tf1 + ts2 + tf2) = y10, and ẏ(ts1 + tf1 + ts2 + tf2) = ẏ10.

• The continuity of state requires that the state at the end of the first flight phase is equal to the state at
the beginning of the second stance phase: x(ts1 + tf1) = x20, ẋ(ts1 + tf1) = ẋ20, y(ts1 + tf1) = y20, and
ẏ(ts1 + tf1) = ẏ20.

• The stance and flight phases must sum to the total stride period, ts1 + tf1 + ts2 + tf2 = T , a linear
constraint.

• The forces are bounded: Fmin ≤ Fi ≤ Fmax, when only simple force bounds exist. When there is a force-
velocity relation, I enforce it as an inequality constraint at grid-points over the stance phase: F ≤ F0ϕ(l̇).

• The stance phases satisfy 0 < ε ≤ ts1,s2 ≤ T and the flight phases satisfy 0 ≤ tf1,f2 ≤ T .

• The initial states are constrained to be within a sufficiently large box. For instance, −2dstride ≤ x10 ≤
2dstride, 0 ≤ y10 ≤ 3, etc. These reasonable inequality constraints on the optimization variables do not
materially affect the optimization result as they are never active at the optimal solution. These help rule
out gaits that start underneath the ground, for instance (note that there is no explicit modeling of the
ground).

Optimization methods and software. All calculations were performed within MATLAB. As noted, the differ-
ential equations were integrated using ode45. All the optimization calculations were performed using MATLAB’s
optimization solver fmincon, a gradient and Hessian based algorithm for solving nonlinearly constrained opti-
mization problems. This solver requires the definition of two functions – one that evaluates the metabolic cost
given Z and another that evaluates the constraint violations given Z. These two functions are constructed as
described in the previous two paragraphs.

When some of the optimizations were repeated with SNOPT [2], a different robust implementation of Sequen-
tial Quadratic Programming, the converged optimal solutions were essentially the same as those obtained with
fmincon.

For most of the optimization results displayed in the paper, I used roughly the same grid resolutions of
about N = 10 to N = 12. Convergence of the optimization to the same solution when started from multiple
initial seeds suggest but not prove the globality of the obtained optimal solutions. Also, in the rare event that
the optimization converges or stops at multiple solutions, I pick the solution with the least cost. Ideally, one
should try many very different initial seeds for the optimization and observe whether all of them converge to the
same optimal solution. I usually considered only one or two initial seeds for each optimization, but one that was
sufficiently far away from the putative optimum. Nevertheless, I suspect globality of most of the optima here
(for the given gait structure and up to incomplete convergence). Convergence of the optimization iterations is
not perfect, but quite close, as can be seen in the smallness of the deviations from left-right symmetry in the
claimed minima (assuming symmetry is optimal); in such cases, while it is found that the same optimization
repeated with an explicit symmetry constraint reduces the cost slightly, such reduction is very small (fraction of
a percent). Another indication of the overall quality of the optimization is the convergence to provably optimal
solutions, for instance, the zero muscle work solution while minimizing Cw for the springy bipeds.

Other gait structures. Note again that the optimization described above is restricted to gaits having a
primary structure [ s1 f s2 f ]. The details of the optimizations with other primary structures are quite
analogous to those described above, with only minor changes to accommodate the changes in the gait structure.
The major constraints, as before, are the leg length constraints, periodicity over a period, continuity of state
across different phases, and the force bounds (or appropriate force-velocity constraints). In the cases where
there is a single stance and a double stance phase, each such gait phase is described by N grid points and each
such phase has its own initial conditions in Z, with appropriate continuity conditions added.
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1.2 Spring-less kneed biped

The gaits are defined with the same set of variables Z as before. The equations of motion are integrated exactly
as before. The only difference in the various function evaluations is due to the knee’s kinematic singularity.
Because the leg force and time of stance are used to to define the gait, if the leg forces are not chosen carefully,
the leg length would exceed the maximum (equal to unity) during the stance phase. When the leg length exceeds
unity, the knee angle and knee angular velocity are not defined; for instance, α = cos−1(l) is complex-valued for
l > 1. A related problem occurs when one needs to divide by a quantity such as sin (α) which goes to zero when
l = 1. We solve both these problems by replacing every occurrence of the inverse cosine by an approximation
to the inverse cosine, that returns real-values for all l, can be made arbitrarily close to the inverse cosine when
0 ≤ l ≤ 1, and is never zero, as described in section 2.3 of this supplementary document. This replacement of
the inverse cosine does not affect the results of the optimization materially because the leg length constraint
l ≤ 1 is satisfied at the optimum.

1.3 Springy telescoping biped

Here, instead of approximating the leg forces F (t) as being piecewise linear, I approximate the leg force rate
Ḟ (t) with a piecewise linear function. This is because the leg force rate plays a relatively central role in the
metabolic cost function and therefore, it is useful for the leg force to be a continuous function (which would
not have been the case had the leg force had been piecewise linear). The leg forces are assumed to start and
end at zero. The leg forces are obtained by integrating the leg force rates, starting from zero. As noted earlier,
the spring force equals the leg force F = −k(lspring − l0), the spring length rate is l̇spring = −Ḟ /k and the
telescoping actuator length rate is l̇actuator = l̇ − l̇spring. The leg force is constrained to begin and end at zero
during each stance phase, so as to avoid a stance phase beginning or ending with already stored elastic energy,
not directly accounted for in the stance energetics.

1.4 Springy kneed biped

Just as for the springy telescoping biped, I use piecewise linear leg force rates here for the description of the leg
forces and the inverse cosine regularization described in section 2.3 of this supplementary document.

1.5 Note on gait structures considered

While ideally all six primary gait structures should be considered at every [V,D], I most often considered the
two gait structures [ s1 f s2 f ] and [ s1 d s2 d ]. The third gait structure [ f s1 d s2 ] was also examined, but
only at very few [V,D] combinations and conditions described in detail in this paper. In this sense, there might
potentially be skipping-like gaits that are better than walking- and running-like gaits in parameter regimes
not considered, as also noted in the discussion of the main text of the paper. The other three possible gait
structures, as noted earlier, were never considered here, but should be in a more comprehensive future work.

2 Some smoothings and regularizations

Sequential Quadratic Programming, our optimization method of choice, assumes that the functions and the
constraints have bounded second derivatives [3]. The following tricks help us enforce such smoothness on our
optimization problems.

2.1 Positive part and the absolute value functions

A smooth approximation of the absolute value function is |x| ≈
√
x2 + ε2 where ε is small. Analogously,

the positive part function [x]+ is approximated as
(
x+
√
x2 + ε2

)
/2 and the negative part function [x]− is

approximated as
(
−x+

√
x2 + ε2

)
/2. We use these in evaluating the work cost Cw, with ε = 0.01. See [4] for

details of convergence in ε and for examples of other such smooth approximations.
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2.2 Smoothing a piecewise-defined function

Often empirical data such as the force-velocity relation or the empirical metabolic energy consumption is best
approximated by a piecewise defined function. Discontinuities in the function values or derivatives at the
junction of the pieces may present problems either during ODE integration or during optimization. Here I
suggest a smooth approximation to such potentially problematic piecewise defined functions.

Consider the function

f(x) =

{
fp(x) if x ≥ 0
fn(x) if x < 0

(1)

whose pieces fn and fp are themselves as smooth as we require, but the function f as a whole may not be.
Then, we may define a smooth approximation f̄(x) as follows.

f̄(x) =


fp(x) if x ≥ ε
g(x) if − ε < x < ε

fn(x) if x < −ε
(2)

where g(x) is the unique polynomial of degree 2q−1, such that the function f̄(x) is continuous and has continuous
derivatives at −ε and ε up to derivative order q−1. When ε→ 0, f̄(x) converges pointwise to f(x). The function
f̄ can be made arbitrarily differentiable by picking q appropriately.

2.3 Regularizing inverse cosine, etc.

The inverse cosine function cos−1(r) is not real-valued for r > 1. Sometimes during the course of optimizations
for kneed bipeds, we might wish to perform this function evaluation for r > 1; for instance, to compute the knee
angle α = 2 cos−1(l) from the leg length l. Because the angle α always occurs inside trigonometric functions,
it is sufficient to find real-valued and smooth approximations of sin(α/2) and cos(α/2) in terms of l. First, by
definition, cos(α/2) = l, which is smooth and real valued. Second, sin(α/2) =

√
1− l2. But

√
1− l2 can be

complex-valued and its absolute value has infinite first derivative at l = 1. Also, we would like the approximation
to sin(α/2) to not go to zero at l = 1, because we may divide by sin(α/2) in some expressions. Satisfying these
requirements is the following approximation of sin(α/2):

ls =
(l − 1)−

√
(l − 1)2 + ε

2
+ 1 (3)

sin(α/2) ≈
√

1− l2s (4)

where ls is an approximation to l when l ≤ 1 and always greater than zero when l > 1 (similar to those in
Appendix 2.1). The use of this approximation effectively mollifies the kinematic singularity at the knee; taking
ε→ 0 makes the approximation more and more accurate, eventually restoring the singularity at l = 1.
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