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that can move might provide insights into, for
instance, whether walking humans prioritize energy
use or stability. Here, motivated by the famous
human-driven oscillations observed in the London
Millennium Bridge, we introduce a minimal mathematical
model of a biped, walking on a platform (bridge or
Author for correspondence: treadmill) capable of lateral movement. This biped
model consists of a point-mass upper body with legs
that can exert force and perform mechanical work
on the upper body. Using numerical optimisation,
we obtain energy-optimal walking motions for this
biped, deriving the periodic body and platform
motions that minimize a simple metabolic energy
cost. When the platform has an externally-imposed
sinusoidal displacement of appropriate frequency and
amplitude, we predict that body motion entrained
to platform motion consumes less energy than
walking on a fixed surface. When the platform has
finite inertia, a mass-spring-damper with similar
parameters to the Millennium Bridge, we show
that the optimal biped walking motion sustains a
large lateral platform oscillation when sufficiently
many people walk on the bridge. Here, the biped
model reduces walking metabolic cost by storing and
recovering energy from the platform, demonstrating
energy benefits for two features observed for walking
on the Millennium Bridge: crowd synchrony and large
lateral oscillations.
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1. Introduction

While many modern humans mostly walk on stable fixed surfaces such as tiled floors, concrete
pavements, and solid ground, humans can walk and run on a wide variety of surfaces with
different compliances, damping, and granularity, and do so with remarkable stereotypicality (e.g.,
[1,2]). In a famous public event, when pedestrians were allowed on to the shaky walking surface
of the London millennium bridge [3,4], many walked in synchrony with each other and the
bridge, with larger-than-normal step widths and therefore applied larger-than-normal sideways
forces on the bridge. This eventually resulted in large lateral oscillations of the bridge, causing
more and more people to walk the same way. Similar lateral oscillations have been observed
in other footbridges as well [5-7]. Experiments with humans walking on laterally oscillating
treadmills have shown a similar response, namely larger sideways forces and wider step widths
[8]. In this article, we examine the mechanics of walking on a shaky bridge and walking on an
externally shaken treadmill by deriving the energy optimal motions of a simple mechanics-based
mathematical model of a biped, and showing, perhaps surprisingly, that walking on such shaky
surfaces can reduce walking energy requirements at high oscillation amplitudes.

A natural hypothesis is that humans change their walking gait on a shaky bridge to be
more stable i.e., not fall down. Wider step-widths might improve sideways stability [9] and
humans use sideways foot-placement to avoid falling sideways and recover from sideways
perturbations [10,11]. Indeed, a few authors [7,8] have used ‘inverted pendulum models’ of
lateral pedestrian motion with step-width-control-based stabilization to explain pedestrian-
driven bridge oscillations. In these models, even though the pedestrians cannot influence the
motion of the bridge (the bridge is assumed to oscillate sinusoidally with fixed amplitude and
frequency), they perform mechanical work on the bridge; thus, the modeled pedestrian was found
to act, effectively, as a negative damper on bridge motion, producing an additional sideways
force at the bridge vibration frequency. In contrast to this stabilization hypothesis, Strogatz et
al. [4] modeled the pedestrians as abstract phase oscillators with randomly distributed oscillation
frequencies (close to the bridge’s natural frequency), coupled to the same mass-spring-damper
modeling the London Millennium Bridge. Here, as the pedestrian count increased beyond a
critical number, they synchronized with each other and the bridge, leading to a steady-state
motion with large bridge oscillation amplitude. While these models provide insight into the
causes for additional sideways forces and synchronization, none of these models have considered
the fully-coupled interaction of one or more humans with the bridge during forward walking.

In this article, we take an alternative approach to modeling the human response to surface
motion. One of the most successful predictive theories of steady-state human locomotion is that
humans move in a manner that minimizes the metabolic cost of walking. Experimental studies
have shown that humans use the metabolically optimal speed, step length, step width, arm swing,
gait transition speeds [12-16], etc. Energy-optimal motions in computational models of a biped
have explained numerous features of human locomotion [17-25]. Remarkably, even with little
practice, humans seem to find energy optimal movement patterns even for novel tasks such as
sideways walking [26], split-belt treadmill walking [27], and tasks with unusual frequency and
step length constraints [28]. Therefore, we consider the hypothesis that humans move on shaky
bridges and shaking treadmills in a manner that minimizes the metabolic energy cost of walking.

Here, we predict walking motions by numerical optimisation, deriving the periodic motions
that minimizes a work-based metabolic cost of walking; we consider the modeling analogues
of both walking on a shaky bridge and walking on an externally shaken treadmill, considering a
range of speed and other parameter values. Our biped model, introduced in section 2, is capable of
arbitrarily complex walking motions [21,23], allowing for a wide range of pedestrian and bridge
motions. We assume that the pedestrians walk in synchrony with the platform on which they
walk and show that in some model parameter regimes, entrained walking on a shaken treadmill
or a shaky bridge can have lower energy costs than normal walking on a non-moving surface.
We examine the effect of the number of pedestrians, the bridge stiffness and the damping on the
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amplitude and frequency of oscillations, and suggest that metabolic energy minimization could
be an alternative explanation of the unusual interaction between humans and the walking surface.
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Figure 1. Biped model on a platform. The biped has a point-mass upper body and can move in all three directions:
forward (X-direction), vertically (Y-direction) and laterally (Z-direction). The platform can only move laterally. Two possible
embodiments of the leg are shown, one with a knee and one with a telescoping actuator.

2. A 3D biped model for walking on a moving surface

We consider a simple biped consisting of a point mass upper body of mass m and two legs, as
shown in figure 1, capable of three-dimensional movement. During each step, only one leg is in
contact with the ground while the other one can be swung arbitrarily. The legs are massless for
dynamical purposes, so that leg swing does not affect the upper body, but have a mass myqoy
to calculate the leg-swing-cost (as in [23,29]; see appendix A2). Both legs have point feet and
their hip joints are coincident with the point-mass upper body, so that the model has zero hip-
width. When a leg is in contact with the ground (that is, in ‘stance phase’), the stance-leg-knee
can flex and extend, applying arbitrarily varying forces on the upper body, thereby changing the
effective leg length. These motions are subject to a maximum leg-length and leg-force constraint. It
is further assumed that the foot does not slip relative to the walking surface during stance. Flight
(when neither leg contacts the ground) and double-support or double-stance (when both legs are
contact the ground) are not considered [21,29], as their absence seems optimal for this class of
biped models at walking speeds [23]. Figure 1 shows two possible embodiments of the leg, one
with a knee, one with a telescoping actuator [21]; the knee is just one way of accomplishing leg
length changes. The model’s motion capability is independent of the embodiment [23].

In its leg force capability, the biped model is a generalization of the classic inverted pendulum
walking model [21,30,31] and various spring mass models [32,33]. A planar version of this biped
has been shown to discover both walking and running like gaits when moving in a straight
line while minimizing energy cost per unit distance [23]. Here, in addition to allowing three-
dimensional movement for the center-of-mass, we allow the walking surface to move laterally,
i.e., perpendicular to walking direction (figure 1).

We consider two types of walking surfaces or “platforms”:

o Infinite inertia platform, for which the platform can affect biped movement, but the
biped cannot affect platform movement. The platform movement is externally specified,
as in the case of a treadmill oscillated sideways e.g., sinusoidally. Thus, we will also refer
to this as the “shaken treadmill” case.
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o Finite inertia platform, a one-degree-of-freedom mass-spring-damper system, whose
motion can be influenced by the biped’s leg forces, as in equation A1.5. We only consider
a lateral degree-of-freedom. Examples include light footbridges and walkways. Thus, we
will also refer to this as the “shaky bridge” case.

The differential equations of motion describing the motion of the biped model and the platform
are given in appendix A1, equations A1.2-A1.4 for the biped and equations A1.5-A1.6 for the two
types of platforms.

The metabolic energy cost function is a sum of four components [23], described with equations
in appendix A2: 1) The resting metabolic rate, a constant cost per unit time, 2) Stance-work
cost, proportional to a linear combination of the positive and negative work of the legs during
stance, 3) Stance force cost, proportional to integrated leg force during stance, 4) Swing leg cost,
proportional to the work needed to move the swing leg to its next stance position.

We seek the walking motions, periodic over two walking steps (equal to one stride), that
minimize the metabolic cost of forward progression. Thus, for either platform model, we
parameterize the space of possible walking motions using finitely many unknowns, using initial
conditions for the steps and describing the leg forces F'(t) using piecewise linear functions [21].
We use numerical optimisation to determine the values of these unknown parameters so as to
produce net forward movement while minimizing an energy cost function, subject to leg length,
leg force, and periodicity constraints. See appendix A3 for computational details (also [21,23]).
For some calculations, we specify the speed and stride length — and consequently the stride
frequency — whereas in other calculations, all such quantities are unknowns to be determined
by the optimisation. We specify speed and stride length when we wish to isolate the effect of
stance work and force costs, as all other cost terms are constant — independent of body motion —
for a given speed and stride length.

For reference, we note that for this biped model, it has been shown [21,23] that the planar
“inverted pendulum walking” motion minimized this metabolic cost in the absence of any surface
motion. In this optimal walking motion, each stance phase consists of an inverted pendulum-like
motion of the body vaulting over a straight leg and the step-to-step transition accomplished using
a push-off impulse by the trailing leg, followed by a heel-strike impulse by the leading leg. The
stance work cost is entirely due to the positive and negative work performed during the push-off
and heel-strike impulses. Of course, when the walking surface is moving, this planar walking
motion will no longer be feasible.

Note that when the platform is moving, we do assume that the human walking motion is
entrained to the platform’s motion so that the state of the whole system is periodic. For the
infinite inertia platform, our basic calculation assumes equality of the stride period and platform
period. For the finite inertia platform, our assumption does allow the bridge to perform multiple
periods per human stride, but such motions were never optimal. Optimisation calculations
with periodicity of multiple human steps are more computationally expensive and were not
considered. Further, we did not consider optimisations in which the system can be non-periodic;
as described in the discussion, such non-periodic optimisation calculations are conceptually
problematic or also computationally expensive.

In the following sections, all results are presented in terms of non-dimensional quantities,
obtained by normalization using appropriate combinations of the mass of the body, the length
of the fully extended leg, and the acceleration due to gravity; the exact normalizations for
non-dimensionalization are described in appendix Al.

3. Infinite inertia platform: walking on oscillating treadmills

In this calculation, we couple the biped to an infinite inertia platform, sinusoidally oscillating
sideways (equation A1.6). As noted, this is a model of a person walking on an externally oscillated
treadmill, with the person having no ability to affect the treadmill’s motion. We consider a range
of platform oscillation amplitudes and frequencies. The walking stride frequency is assumed to
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match the platform oscillation frequency, so that the biped is entrained to the platform, i.e. during
one walking stride, exactly one platform oscillation occurs. The initial position and velocity of
the body center of mass, the relative phase between the platform motion and the gait cycle, the
position of the foot during the second step and the piecewise-linear forces exerted by leg on the
center of mass are parameters of the optimisation. The position of the foot during the first step is
taken as the origin for the coordinate system.

For a fixed non-dimensional walking speed of 0.4 (about 1.2 m/s for a person with leg length
0.95 m), we determine the optimal walking motion for a range of platform amplitudes and
frequencies. The range of frequencies was chosen to be around the optimal non-dimensional
stride frequency (around 0.4) for the biped while walking without any platform oscillation (planar
walking). Figure 2a shows that the biped can reduce its metabolic cost of walking by appropriately
coordinating the leg forces, the initial position and velocity of the center of mass and the phase
relative to the platform motion. In particular, we find that even for a non-dimensional oscillation
amplitude of 0.03 (about 3 cm), there is a noticeable reduction in the model metabolic cost for
a frequency beyond a non-dimensional frequency of 0.3. Within the frequency range explored
here, higher platform oscillation amplitudes allow greater cost reduction for a broader range of
frequencies. Figure S8 of Supplementary Appendix shows that the qualitative phenomenon of
energy cost reduction persists for a range of forward speeds and model parameters.

Figures 2b-c show the body trajectory for a particular platform oscillation amplitude and
frequency, indicating that the lateral body motion is smaller than the platform motion. Analogous
to walking on a non-moving surface [21,23], we find that the optimal motion in the presence of
platform motion is also an inverted pendulum-like motion with impulses corresponding to heel-
strike and push-off — this is a non-planar inverted pendulum walking motion. Figures 2b-c show
such an inverted pendulum like motion of the center of mass; figure Sla of the Supplementary
Appendix, obtained by allowing arbitrary piecewise linear leg force changes, shows that the
optimal motion displays the following features of inverted pendulum walking.. The leg is always
stretched close to the maximum limit, i.e. the biped walks with a straight knee during stance,
with a large step width so as to manage the lateral platform movement. The push-off and heel-
strike occur as brief impulses near the extremes of platform motion (as in [21]), enabling the
instantaneous velocity change from one pendular step to the next; the push-off does positive
work and the heel-strike does negative work. This optimal motion corresponds to a relative phase
of about /2 between the platform motion and the biped motion. When the platform moves
leftward, the body remains to the left of the foot. As the body moves forward during a given
stance phase, the foot (fixed relative to platform) moves inward toward the body from heel-strike
to push-off.

For some oscillation parameters, we found that it is possible for the model to walk on an
oscillating platform without any heel-strike or push-off impulses — in other words, smoothly
transitioning from one inverted pendulum stance phase to the next. Such a motion would
optimize the “stance work cost” portion of our metabolic cost model, making this leg work
equal zero; see Supplementary Appendix, figure S1b. But such a motion is not optimal for the full
metabolic cost (i.e., not one of those found in Figure 2a), because other components of metabolic
cost (leg swing and stance force costs) are higher for this motion.

We find that the mechanism by which the oscillating platform reduces the cost of walking
is by reducing the necessary push-off and heel-strike impulse magnitudes, thereby reducing
the positive and negative stance leg work during these impulses. The variation in energy cost
components can be seen in figure S13 (Supplementary Appendix), which shows that the decrease
in the stance work cost more than compensates for a slight increase in stance force cost. By
appropriately synchronizing the body motion with the platform motion, one can let the platform
perform some of the mechanical work on the body that would otherwise have to be done by the
legs. The leg work performed by the impulses are smaller because a smaller velocity direction
change is required across the step-to-step transition than in normal walking. In particular, the
out of plane motion of the center of mass makes the sagittal-plane projection of the center of
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mass trajectories much flatter than in normal walking — ultimately leading to the smaller velocity
direction change across the step to step transition [34,35]. See Supplementary Video 1 for animations

of these optimal walking motions.
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Figure 2. Energy-optimal walking on an oscillating infinite inertia platform. a) Energy cost per unit distance versus
oscillation frequency for 0, 0.03 and 0.07 non-dimensional oscillation amplitudes. Walking speed is fixed at 1.2 m/s
(non-dimensional speed = 0.4). Thus, we see that oscillating platforms reduce walking energy cost for a range of
oscillation frequencies. b) Motion of the center of mass and platform for 0.07 non-dimensional platform amplitude and
non-dimensional frequency 0.4, denoted by a ‘star’ (x) in panel-a. The blue curve shows the corresponding position of
the platform for each forward position of the center of mass, the red curve represents the motion of the center of mass,
the green lines are the loci of the feet, with open circles showing the position of the foot at the heel-strike (red) and push-
off (green). ¢) The 3D optimal body motions are shown in perspective view. The leg directions are shown as blue lines
between the foot positions (filled black circles, moving sideways) and the center of mass positions (black circles with gray
fill). The two steps are reflection symmetric about a mid-line as seen in panel-b, even though not immediately apparent in
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4. Finite inertia platform: walking on shaky bridges

We consider a finite inertia platform that is a one degree-of-freedom spring-mass-damper system
(as also in [4]). This model is a closer approximation to a bridge than an externally oscillated
infinite inertia platform, because the pedestrian can actually influence the platform motion and
this platform motion is not restricted to purely sinusoidal oscillations. Again, as for the infinite
inertia case above, we first established that even when we allow arbitrary leg length changes
and piecewise linear leg force changes, the optimal motion is a 3D non-planar inverted pendular
motion with push-off and heel-strike impulses, as shown in figure S7 of the Supplementary
Appendix. Therefore, the calculations described below assume the biped walks using exactly an
inverted pendulum gait using the maximum leg-length. This inverted pendulum simplification
speeds up the optimisations and improves convergence. Push-off impulses are parameters of the
optimisation, but heel-strike impulses are computed based on the motion of the center-of-mass,
assuming a plastic collision (as in [29]), to make the leg-length-rate after heel-strike exactly zero.

The stiffness, mass and damping of the platform are selected as equal to the corresponding
modal quantities for the Millennium Bridge (as in [4]); see appendix A1 for these and other human
parameters used. Further, to establish more general trends, we also consider multiples of these
stiffness and damping values, denoted 0.5x, 2x, etc. The unknown parameters for optimisation
are stride length, stride frequency, initial position and velocity of both the centre of mass and the
platform, the position of the foot for the second step, and the magnitudes of push-off impulses;
we do not constrain forward speed. Once again, the position of the foot during the first step is
taken to be the origin of the co-ordinate system. The initial conditions of the platform serve the
same purpose as the relative phase from the infinite-inertia calculation. Unlike the infinite-inertia
platform, the platform oscillations are not constrained in any way here, in that there can be any
number (even non-integer number) of oscillations per stride and the amplitude can be as large
or as small as needed. This allows for solutions where there is no platform oscillation. For each
stiffness and damping value, we perform the optimisation calculations for a range of pedestrian
counts Npedestrians between 1 and 1000 or 1500. We model Ny edestrians pedestrians simply as one
large pedestrian with Npcdestrians times the mass m of a single pedestrian, thus assuming that all
Npedestrians pedestrians walk in synchrony with each other. For reference, at Njcdestrians = 1600,
the total pedestrian mass equals the bridge mass.

First, for stiffness and damping equal to that of the Millennium Bridge (1x damping curves
in Figure 3a,b), we find that a walking motion that substantially oscillates the platform is
optimal when the pedestrian number increases beyond a critical level, about 750 pedestrians.
The reduction in metabolic cost from the oscillating bridge is small. Nevertheless, these results
show that if there are a large number of people walking in synchrony, they can potentially lower
their metabolic cost by shaking the bridge. For lower numbers of pedestrians, the optimal walking
motion is planar, without oscillating the bridge. Figure 4 shows the optimal body and foot motion
for Npedestrians = 1000 and the London Millennium Bridge parameters; see also figure S2a of
Supplementary Appendix and Supplementary Video 2.

Figure 3a,b also shows these trends for a range of damping values from 0x to 1x the Millennium
Bridge damping, keeping the stiffness fixed at that of the Millennium Bridge (1x stiffness). As
damping is decreased from 1x, the critical number of pedestrians required to make the oscillating
platform solution optimal reduces; for instance, at 0.4x damping, the critical number is about
250 pedestrians (Figure 3a,b). Independent of platform damping, increasing the number of
pedestrians beyond the critical number leads to an increase in platform oscillation amplitude
and a corresponding decrease in metabolic cost per unit distance; this decrease in metabolic cost
is smaller for higher platform damping (Figure 3a,b). For the oscillating solutions, the pedestrian
walks with a large step width, which increases with platform oscillation amplitude and number
of pedestrians (figures S3-S5, Supplementary Appendix). We also note that these qualitative trends
persist for a large range of model parameters (foot mass, resting rate, and stance force cost scaling)
as shown in figure S9 of Supplementary Appendix.

H
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Figure 3. Energy-optimal walking on the finite inertia platform shows platform oscillations reduced metabolic
cost when there are sufficiently many pedestrians. a) Metabolic energy per unit distance versus number of pedestrians
for the exact Millennium Bridge stiffness and for different multiples of the Millennium Bridge damping. Lower damping
and more pedestrians allow for greater reduction in the energy cost. b) Platform oscillation amplitude versus number
of pedestrians for damping in multiples of the Millennium Bridge damping and the exact Millennium Bridge stiffness.
More pedestrians and lower damping lead to higher oscillation amplitudes. ¢) Metabolic energy per unit distance versus
number of pedestrians for stiffness in multiples of the Millennium Bridge stiffness and the 0.5x the Millennium Bridge
damping. Higher stiffness and more pedestrians allow for greater reduction in the energy cost. d) Platform oscillation
amplitude per unit distance versus number of pedestrians for stiffness in multiples of the Millennium Bridge stiffness and
the 0.5x the Millennium Bridge damping. Lower stiffness and more pedestrians allow for greater oscillation amplitudes.
See Supplementary Appendix, figures S3 and S5, for additional details such as optimal step widths, speed, and stride
frequency.

Fixing the damping to 0.5 times that of the Millennium Bridge and varying the platform
stiffness, we see similar qualitative behaviour: for all stiffnesses, beyond a critical number of
pedestrians, a larger number of pedestrians leads to oscillating platforms with a corresponding
reduction in metabolic cost per unit distance. In Figure 3c,d, for the number of pedestrians
explored, we see that the metabolic energy cost per unit distance reduces with increasing stiffness
from 0.75x to 1.25?; the metabolic cost increases with increasing stiffness from 1.25x to 1.5?. The
critical number of people shows the opposite trend with changing stiffness. Higher stiffness
lead to lower oscillation amplitudes. Overall, while the trends respond in a simple monotonic
manner to changes in platform damping, they respond non-monotonically to changes in platform
stiffness.
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The principal mechanism for the metabolic cost reduction is the lowering of the stance work
required of the legs, reflected in smaller magnitudes for the heel-strike impulse. The effect of
oscillations on the individual components of the cost function can be seen in figures S10 and S11
of the Supplementary Appendix. The reduction in the required leg work is greatest when damping
is zero, when an oscillating platform solution is optimal for even one pedestrian (see figure 54 for
results for the zero damping case). When there is finite damping, the positive work at push-off
should sufficiently exceed the negative work at heel-strike so as to compensate for the energy
lost to the bridge’s structural damping. Again, the sideways motion of the body and the bridge
reduces the necessary change in body velocity direction at the step-to-step transition, thereby
decreasing the work required of the push-off and heel-strike impulses [34,35].

Why is there a critical pedestrian number for oscillating solutions to be better than planar
solutions? The reason appears to be the presence of damping. In general, we find that increasing
the number of pedestrians lowers the metabolic energy cost per unit distance in the oscillating
platform solution. As noted, when there is considerable damping, net positive leg work needs
to be performed to replace the energy lost in the bridge motion. This additional net positive
work requirement (for a given platform amplitude) is distributed over all pedestrians, and
consequently, for a large enough pedestrian count the oscillating solution becomes better than
the planar solution.

The non-dimensional optimal speeds for the range of parameters considered appear to be
between 0.3 and 0.45, which correspond to 0.95 and 1.4 m/s. The model parameters corresponds
to a slower-than-natural optimal speed for planar walking on a non-moving platform, but
this optimal speed can be made to agree with normal human optimal speeds by choosing an
appropriate resting metabolic rate, without changing any of the qualitative phenomena of energy
cost reduction by a sideways shaking bridge..

For any given speed, the oscillating solution has lower cost than the planar solution only
when the non-dimensional stride frequency is around 0.3 as demonstrated in figure S12 of the
Supplementary Appendix, which was obtained by solving the optimisations for a range of fixed
walking speeds and stride lengths for 1000 pedestrians. This optimal stride frequency is also close
to the bridge’s natural frequency (~ 0.33).

5. Discussion

The simple biped model suggests that walking on a laterally oscillating platform could be more
efficient than planar walking in terms of metabolic energy cost. For walking on the finite inertia
platform (shaky bridge), we find that the optimal solution is inverted pendulum walking with
stride frequency entrained to the platform oscillation frequency, with near 0 phase difference
between the pedestrian and the platform. These results for the model are similar to observations
made about humans walking on the London Millennium Bridge [3] as well as on laterally
oscillating treadmills [36]. However, on the infinite inertia platform, the optimal for our model
was closer to 5 phase difference.

While we have shown that the bipeds can potentially reduce the energy cost by synchronising
their walking with the platform’s motion, we have not ruled out the possibility of some arbitrarily
complex non-periodic motion of the system that has an even lower energy cost. We did not do
optimisations allowing non-periodic motions for two complementary reasons — the same implicit
reasons why almost every biped walking optimisation has assumed periodicity. First, allowing
the initial state to be different from the final state allows efficient forward movements that we
would not call walking: for instance, turning off all the muscles and falling forward; or entirely
using up some initially stored energy in the bridge to move forward, but only for a couple of
steps. Such non-locomotor behaviors might be ruled by requiring persistent walking for sufficient
distance, but then the resulting optimisation over a large number of steps would be vastly
more computationally intensive. We hope to consider optimisations with multiple independent
pedestrians or with periodicity over multiple strides in future work.
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Optimal walking motion for the London Millennium Bridge parameters
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Figure 4. Optimal walking motions for London Millennium Bridge parameters. Perspective view and top view
(orthogonal projection) of the center of mass trajectory for Npedestrians ~ 1000, non-dimensional walking speed is
close to 0.3 and non-dimensional stride-frequency is about 0.29. Leg directions are shown between corresponding foot
and center of mass positions. The foot moves outward and then inward in a single step, as the body moves forward. See
Supplementary Appendix figure S2 for another representation of the same information and Supplementary Video 2 for an
animation of this motion.

For the models considered here, planar walking movement and zero step-width is optimal
when the platform is not moving. However, humans walk with non-zero step width even in
normal gait, perhaps because of having finite hip-widths [15]. Thus, normal human walking
exerts a small sideways force even in the absence of platform oscillation. To understand the
qualitative effects of having a minimum step width, we repeated the optimisation calculations
with the finite inertia platform while constraining the walking step width to be at least the normal
human step width (about 0.15 leg lengths), so that even normal walking produced sideways
leg forces for the model. Even with this non-zero step width constraint, one could have non-
oscillating solutions if one half of the pedestrians were exactly out of sync with the other half,
or if all pedestrians had random phase relative to each other. Such non-oscillating solutions
were sub-optimal. This step-width constraint leads to solutions with oscillating platforms and
synchronized pedestrians for all pedestrian counts (see Supplementary Appendix, figure S6). For
higher pedestrian numbers, the optimal solutions are identical to those obtained without the
step width constraint and for lower pedestrian numbers, the optimal solution simply uses the
minimum step width allowed (instead of zero, figure S6). The finite step-width solutions have
higher cost than the zero step-width solution with no oscillations, but as before, the cost decreases
as the number of pedestrians increases (figure S6).

Optimizing metabolic energy cost for this simple model can reproduce some aspects of human
behaviour, however, given the simplicity of the model compared to a human, it may only predict
qualitative aspects of phenomena while having quantitative differences with experiments. For
example, the optimal solution discovered by this model for the exact parameters of the London
Millennium Bridge needs a large number of pedestrians, about 750, for the onset of large bridge
oscillations whereas published results are closer to 160. The use of periodicity constraints further
prevents us from looking at the transient motion before the onset of steady state.
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We assumed that human walkers will entrain to platform frequency, partly based on the
observed steady-state motion of pedestrians on the London Millennium Bridge [3]. For the
infinite inertia platform, the assumption that entrainment always occurs at steady state is likely
reasonable for lateral oscillations near human stride frequencies, but may not hold true for
oscillations much faster or slower than the stride frequencies, as found in [37] (see also [38] for
entrainment studies with periodic torque perturbations to ankle, instead of surface oscillations).
Without the assumption of entrainment, the energy optimisation calculation must be over all
non-periodic walking strategies, which makes the optimisation intractable.

Our predictions that metabolic cost can be reduced by lateral motion can be directly
tested in two kinds of experiments, analogous to the infinite and finite inertia cases we
considered: (1) experiments with externally laterally oscillated treadmills with associated
metabolic measurements [8,37], ensuring that the oscillations do not happen too slowly (as in
[37]); (2) experiments in which the lateral degree of freedom is a simple spring-mass-damper,
which can be simulated, for example, by placing a sufficiently light treadmill on wheels facing
sideways and connecting the treadmill to the wall using springs, bungee cords, or elastic straps.
In both these types of experiments, it would be of interest to test both the immediate dynamic
and metabolic response of the human subject (within seconds and minutes), as well as the
response after sufficient training (for a few hours, say). Energetics as the primary explanation
for the Millennium Bridge phenomenon can be credible only if the humans entrain to optimal
walking motions on the time-scale of less than a minute; there is some evidence for such fast
optimisation time-scales in human locomotion [26,28,39,40]. The experiments described above
could also measure the forces exerted by the legs on the ground and the work performed by
the legs; our models predict that the impact forces (force peaks in walking) will be reduced if
there is appropriate entrainment to sideways movement. If impact forces are indeed reduced
in experiment, one could use such laterally oscillated treadmills for low-impact workouts. We
could use models and methods similar to those used here to study locomotion on other types of
compliant surfaces, for instance, non-human primate locomotion on flexible tree branches [41,42]
or humans running [1,43].

We have shown the theoretical possibility of metabolic cost reduction only when a large
number of people act in synchrony to shake a bridge (at least for some bridge parameters). This
result could be considered similar to the posited reduction in locomotor metabolic cost in other
contexts such as bird flying in formation [44] and fish swimming in a school [45], although in these
other contexts, the different individuals may benefit by different amounts unlike in our model.

We have focused on energy optimality as a theory for human walking strategies while on
a moving surface. One complement to this hypothesis is the effect of neighboring pedestrians
due to space constraints (e.g., collision avoidance [36]) and other cognitive coupling between
neighbors [46]. From a mechanical perspective, the most significant and plausible complement to
the energy optimality hypothesis is the hypothesis that the observed human-platform dynamics
is an emergent property of the controller that keeps human walking stable. While limited
theoretical explorations [7,36] have found evidence for the stability hypothesis, a definitive
understanding of the human-platform dynamics has to await a more detailed characterization
of the controller that maintains stability during walking — an outstanding open problem in
locomotion biomechanics [10,11,47]. Once we have this human walking controller, we could check
if one or many biped models endowed with such a stabilizing controller, walking forward on
a shaky bridge, automatically synchronize with each other and to the bridge, thereby causing
large bridge oscillations. Given that energy optimality has been so successful in explaining other
aspects of human movement and can at least explain some known qualitative features of humans
on moving surfaces, we need careful studies that can distinguish energetic optimality from
stability. For instance, it may superficially be thought that a wider step width is an indication that
the humans are stability-challenged in the lateral direction; however, our calculations show that
wider step width is energy optimal even when stability is not taken into account; thus, delineating
the individual effects of energetics and stability might be non-trivial.
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Appendix

The appendix contains the following three sections:

e Section A1 lists the equations of motion for all variants of the simple model described
in figure 1 of the main manuscript. These variants are the parameterised-leg-force model
and the inverted pendulum model, each of which may be coupled with an infinite or
finite inertia platform.

o Section A2 details each term in the cost function for the biped as described in section 1 of
the main manuscript.

e Section A3 provides specific information about the ODE solver and optimisation
algorithms used in our calculations.

A1. Equations of motion

Body motion. For the model shown in figure 1, there are two forces acting on the center of mass
during single stance, namely, the force along the leg F' and the weight of the biped mcomg. The
forward, vertical and lateral positions of the body center of mass (CoM) and the stance foot in
contact with the ground are represented as x, y and z respectively with appropriate subscripts.
The leg length is /, given by,

52 = (Tcom — wfoot)z + (Yoom — yfoot)2 + (%com — Zfoot)Q . (A1.1)

The equations of motion for the center of mass are:

. Tcom — Tfoot
McomTcom = F 700, (A1.2)

1

Meomicom = F w ~ Meomg, and (A1.3)

Zcom — 2
F foot

McomZcom = #, (A1~4)

which are applicable for all versions of the biped model.

Non-dimensionalization Non-dimensionalization is performed by dividing by appropriate
combinations of mass mcom, maximum leg length {max, and acceleration due to gravity g. In
the following, we denote the non-dimensional analogs of dimensional quantities by adding
an overbar; for instance, fore-aft position Zcom = Tcom/fmax, non-dimensional leg force F=
F/(mcomg), non-dimensional speed % =v/v/¢fmax, and non-dimensional time ¢ =ty/g/¢max.
Energy cost per distance is normalized by mg, energy cost per unit time is normalized by
mg+/glmax, and energy per step is normalized by mglmax.

Platform motion. When we have a finite inertia platform, we add another equation for the
motion of the platform in the lateral direction:

. . Zcom — Zfoot
Mplatform Zplatform + Bplatformzplatform + Kplatformzplatform =-F (A1.5)

14

where Kpjatform and Bplatform are the stiffness and damping of the platform in the lateral
direction, respectively. For the infinite inertia platform, the platform motion is specified as
sinusoidal, of the form:

Zplatform = Aplatform sin (wplatformt + ()b) (A16)

where Apjatform 1S the amplitude, wyjatform is the frequency of oscillation, and ¢ is the phase
difference between the biped stride and the platform oscillation.
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Leg forces. We performed two different types of optimisation calculations: (1) in which the leg
forces are allowed to be arbitrary and (2) in which the biped performs an inverted pendulum gait
with push-off and heel-strike impulses. When the leg force is arbitrary, they are parameterized as
piecewise linear F'(t) to be computed by the optimizer. When the biped is assumed to perform
an exact 3D inverted pendulum motion, we use a differential algebraic equation formulation to
enforce the leg length constraint. We do not fix the leg length, but rather constrain the motion
of the center of mass to be such that the leg length cannot change from the beginning of the
motion. The second derivative of this leg length constraint (equation A1.1) produces the following
additional ODE:

(Toom — Toot) Lcom + (ycom - yfoot) fjcom + (Zcom — Zfoot) Zcom =
Al.7
.2 .2 .2 .2 2. (A1.7)
—ZTcom — Yeom — | Zcom ~ Zplatform | T Zplatform (2com = Zfoot) -

This equation, along with the equations A1.2-A1.4 can be combined to determine the acceleration
of the center of mass and the force along the leg. For the finite inertia platform, we add equation
A1.5 to these equations to get the lateral acceleration of the platform as well.

Model parameters. For the finite inertia platform, the nominal values of mass, stiffness, and
damping are identical to those used in [4] as approximating the London Millennium Bridge: M =
1.13 x 10° kg, Bplatform = 1.1 x 10* Nsm~*, and Kplatform = 4.73 X 10% Nm~"'. We also used

human mass m = 70 kg, maximum leg length {max =0.95 m, and g =9.81 ms~ L.

A2. Metabolic cost model

The cost function contains the following four terms, resting metabolic rate, stance work cost,
stance force cost, and swing leg cost, defined as follows:

(i) Resting metabolic rate. The experimentally determined metabolic cost of walking [48]
for a human at a given speed of walking v is:

v
1ms—1

Metabolic rate per unit mass = (2.2 + 1.155 ( )2> Watts per kg. (A2.1)
Of this, roughly 1.4 Watts per kg is the resting metabolic rate [48]. Converting this resting
rate to the appropriate non-dimensional units and multiplying by the mass of the biped
gives us the resting metabolic rate for the biped. The resting metabolic rate is key to
obtaining a non-zero optimal speed [14]; given a finite resting rate, infinitesimal walking
speeds would imply very large costs for traveling a given distance.

(ii) Stance work cost. Humans are known to perform positive work at an average efficiency
of approximately 25% (npos = 0.25) and negative work at an efficiency of 120% (7jneg =
1.2) [23,31]. We determine the stance cost as a linear combination of negative and positive
work, Wheg and Wpos, done by the leg on the center of mass, using the reciprocal
efficiency as the weighing parameter.

1 1

Wpos +
Tpos Theg

Stance work cost = Wheg. (A2.2)

When the biped is controlled with arbitrary parameterized leg forces F'(t), the positive
and negative stance work is computed by integrating the positive and negative part of
the power P = F/ produced by the leg over the course of the motion:

Wpos = J(m Tdt and Wieg = J(—m *dt, (A2.3)

where [P]7 is the positive part: [P]" = P when P >0and [P]" =0 when P < 0.
For the inverted pendulum version of the biped, the work done by the leg on the center
of mass is entirely condensed into the push-off and heel-strike impulses; the expressions
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in equation A2.3 will evaluate to exactly zero during the inverted pendulum phase
(leg length does not change, therefore the leg does zero work on the center of mass).
The work done by each of these impulses, which is entirely positive for push-off and
entirely negative for heel-strike, equals the kinetic energy change produced by them in
the pedestrian-platform system (see [31,35] or supplementary information [26]):

. . m 2 Mplatf 2
Kinetic energy change = ( S VUcom + %Uplatform) )
after—impulse
m 2 Mplatform , 2
- ( $ Ucom + 2 vplatform) . .
before—impulse

(iii) Swing leg cost. The cost of moving the swing leg is determined as the weighted sum

of the positive and negative work needed to move the foot from its position during one
stance phase to its next position, starting and ending at rest. For this work calculation, the
velocity of the swing leg, vswing, is taken as the ratio of distance between the positions of
the foot in two consecutive steps and the step period. Both positive and negative work
equal an effective leg kinetic energy mg,otvaying during swing; we use an effective foot
mass Moot = 0.05Mcom as in [26] so as to approximate the moment of inertia of the entire
leg with the point-foot. Swing cost equals this kinetic energy scaled by the reciprocal
efficiencies (1/7pos + 1/7neg)-
This simplified swing cost we used does not go to zero nor is a minimum at the
legOs natural frequency, but instead monotonically increases with swing amplitude and
frequency. So, we rule out the possibility of leg swing cost reduction by walking close to
the passive leg swing frequency. It has been argued that in normal walking, humans walk
at higher frequencies than passive leg swing (as do our models’ optima) so as to have
smaller step lengths and smaller stance work costs [29]; that is, the presence of swing cost
prevents the optimal stride frequency going to infinity — as large stride frequencies and
small step lengths reduce the stance work cost.

(iv) Stance force cost. This is a cost proportional to the time-integral of the force along the
leg.

Stance Force Cost = ngorce JF dt. (A24)

We obtain the proportionality factor 7, by noting that subtracting the resting metabolic
rate from equation A2.1 predicts a non-zero metabolic rate for zero walking speed. As
a simplifying assumption, we attribute this difference, not explainable using stance or
swing work, to the integral of the leg force. We use non-dimensional 7j¢o;ce = 0.026. The
stance force cost penalizes large step widths and large step lengths.

The sum of these four cost terms per unit distance is used as the objective function to
be minimized in our optimisation calculations. The non-dimensional version of this objective
function is an estimate of the “cost of transport” of walking [49,50].

A3. Details of the numerical optimisation

As noted before, we performed two different types of optimisations, one in which the leg forces
and length changes are allowed to be arbitrary (force-parameterized version) and one in which the
walking is assumed to be inverted pendulum. We performed these two types of optimisations for
both the infinite inertia platform and the finite inertia platform situations. Instead of describing
all these four calculations, we describe two of them: how we minimize the metabolic energy
based cost function for a force-parameterised biped model walking on an infinite-inertia platform
and for an inverted pendulum biped model walking on a finite-inertia platform. The other
two optimisations, namely force-parameterized version for finite inertia and inverted pendulum
version for infinite inertia are completely analogous. Overall, we use similar methods to those
used in our previous work in biped optimisations [21,23]; see, especially, supplementary material
of [23] for further technical details.
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Force-parameterized optimisation for walking on an infinite inertia platform. For the force-
parameterised biped model, for each calculation, we fix the step period tstep, walking speed
Ustep, the platform oscillation amplitude A, the platform oscillation period tplatform = 2lstep
by assumption of entrainment, from which we determine the platform oscillation frequency
w. The rest of the model is defined by the initial position and velocity of the center of mass
(Zcom0s Ycom0s Zeom0) aNd (£com0, Yecom0, Zcomo) for each step, the position of the foot during the
second step (Zfoot2, 0, Zfoot2), the relative phase of the platform motion and the ¢ and 2N + 2
elements of a piece-wise linear force curve F (Nsegments 1 1 for each step). The position of the
foot during the first step is the origin, without loss of generality. This gives us 2Nsegments + 17
parameters of a gait:

7= (tstep7 Ustep, W, A, £CoMO» Yeom0» Zecom0s Ecom0s Yeom0s Zcom0s D, Tfoot2s Zfoot2s Fj)

with j=1,...,2Nsegments + 2. As noted, five out of these 2Nsegments + 17 are fixed for each
calculation and therefore, the rest 2Nsegments + 12 quantities are unknowns decided by the
optimisation. The gait is divided into 2Nsegments grid segments, separated by the grid-points
at which the leg forces are specified; the body motion in each segment is obtained by integrating
the appropriate ODEs, with each integration using the end state of previous grid segment as the
initial state.

This walking gait is subject to the following constraints:

o Aleglength inequality, £ < {max, imposed by evaluating the leg length for at least 3 points
in each grid segment. Since ¢max is used for normalization, we have fmax = 1.

o Periodicity constraints requiring that the state at the end of the second step is equal to the
state at the beginning of the first step except for a forward translation equal to the stride
IEHgth (dstride) in the x direction: dgirige = 2vsteptstep, Tcom (Qtstep) = Tcom0 T dstrides
Ycom (Qtstep) = Ycom0, Fcom (2tstep) = Zcom0, Tcom (Qtstep) = Zcom0, Yeom (Qtstep) = Ycom0,
and Zcom (2tstcp) = Zcom0-

o The forces are bounded 0 < Fj < Finax for j =1,...,2Nsegments + 2 to ensure that the
foot does not pull on the ground and the leg force magnitude is reasonable. We used
Fiax = F/Fax = 4; none of the qualitative results change if we used Finax = 3 or 5.

o The initial states and the position of the foot during the second step are bounded within a
sufficiently large box. For example —Imax < Zcomo < lmax. These bounds are never active
at the optimal solution.

Inverted pendulum optimisation for walking on a finite inertia platform. For each
optimisation with inverted-pendulum model on a finite inertia platform, we fix the mass
Mplatform, Stiffness Kpjatform and damping constant Bpjaiform for the platform and the number
of pedestrians Npedestrians- The rest of the model is defined by the step period tstep, the step
length dstep, the initial position and velocity of the center of mass (Zcom10,Ycom10; Zcom10)
and (£com10, Yecom10, Zcom10), the initial lateral position and velocity of the platform zpjatform10
and Zplatform10, the initial position and velocity of the center of mass for the second step
(Zcom?20; Ycom?20, Zcom20) and (£com?20; Yeom?20, Zcom20), the initial lateral position and velocity of
the platform during the second step zpjatform20 @nd Zplatform20, the position of the foot during the
second step (Tfoot2, 0, 2fo0t2), and the magnitudes of the four impulses I;,ush—off1, Theel—strike1,
Ipush—ofr2 and Ipeel—strike2- The foot position during the first step as the origin for the system.
This gives us 28 parameters to define the gait Z = (mplatform, Kplatforms Bplatform, tsteps dstep,
Zcom10, Yecom10s Zcom10s Leom10, Yecom10s Zcom10, Teom20, Yecom20, Zecom20, Leom20, Yeom20, Zcom20,
Zplatform10/ Z.platfornﬂO/ Zplatform?20s #platform20s Lfoot2s Zfoot2/ [push—offlr Theel—strikel, Ipush—ofor
Theel—strike2), out of which 4 are fixed constants during a given optimisation.

The gait is divided into two sections, one for each step. The initial point of a step is subject
to a heel-strike impulse, which changes the velocity of the biped and the platform. This heel-
strike impulse is calculated to ensure that the leg-length-rate after impulse is exactly 0 to allow
for inverted pendulum walking. The resulting state is integrated using the ODE for the inverted
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pendulum model and finally this state is subject to a push-off impulse to produce the end state
for the section. The heel-strike impulse needed to make leg-length rate 0 at any point of time can
be determined using the following equation:

_ Zeom (Teom — Tfoot) + Yeom (Yeom — Yfoot) + (Zcom — Zfoot ) (2com — Zfoot)

(Zcom —Zfoot) 2 + (Ycom —Yfoot) 2 + (m+mprattorm) (Zecom —Zfoot ) 2
me me MMplatform?

Theel—strike =

(A3.1)
The optimisation problem is solved subject to the following constraints:

o A leg length equality, £ = /imax imposed by evaluating the leg length at the beginning of
each step; in non-dimensional terms, ¢/¢max = 1. If the constraint is met at the beginning
of the step, the fact that the impulses can only change velocity and that the motion is
inverted-pendulum-like ensure that it shall be met till the end of the step.

e Periodicity constraints requiring that the state at the end of the second step is equal to
the state at the beginning of the first step except for a forward translation equal to the
stride length dg¢yige in the x-direction: dgtyide = 2dstep- Teom (2tstep) = Tcom10 + dstrides
Ycom (2tstcp) = Ycom10, Zcom (Qtstcp) = Zcom10, Zcom (2tstcp) = Zcom10, Ycom (Qtsmp) =
Yeom10, Zcom (2tstep) = Zcom10, Zplatform (2tStep) = Zplatform10, and 2':paltform (2tstep) =

Zplatform10~
o Continuity constraints requiring that the state at the end of the first step is equal to

the state at the beginning of the second step Zcom (tstep) = Tcom20, Ycom (Estep) = Ycom?20,
Zcom (tstep) = Zcom?20, Tcom (tstep) = Zcom20, ycom (tstep) = ycomQO/ Zcom (tstep) = Zcom20,
Zplatform (tstEp) = Zplatform20/ and 2.5paltform (tstep) = Zplatform20~

e The impulses are bounded 0 < I; < Imax to ensure that the foot does not pull on the
ground and the impulse magnitude is reasonable. The impulse upper bound in never
active in the optimal solutions, so its exact value is irrelevant.

o The forces are bounded 0 < F; < Fax to ensure that the foot does not pull on the
ground and the leg force magnitude is reasonable. This is done by calculating the force at
sufficiently many intermediate point of the gait using the equations of motion. The upper
bound on the force is never active in the optimal solutions, so its exact value is irrelevant.

Computational solution. The equations of motion were solved using ode45 in MATLAB with
absolute and relative tolerances of at most 1072 and also an equivalent constant step-size
Runge-Kutta method for consistency. Optimisation was performed with SNOPT [51,52], a robust
constrained nonlinear optimisation program; we used optimality and feasibility tolerances of
107, The parameterised-leg-force biped model used at piece-wise linear forces with at least 14
segments to simulate each step of walking.

The planar inverted pendulum walking solution is obtained robustly by the optimisation from
random initial seeds far away from the optimum, when the platform is constrained to not move
(essentially a repetition of calculations elsewhere [21,23]). When the platform is moved or the
bridge is allowed to move, to obtain the non-planar optimal solutions, we typically started the
optimisations from initial seeds that are sufficiently perturbed versions of the planar solution.
When we obtain optimal solutions for a sequence of parameter values, we use the optimal
solution for the previous parameter value as the initial seed for the current parameter value —
and then do a forward and backward sweep of the parameter values to pick the lower of the two
optimal solutions. Numerical experiments suggested that there were at most two local minima,
the planar walking optimum and the non-planar walking optimum, and sometimes only one; we
did not see evidence for many more local minima. While we cannot rule out that there does not
exist a lower global minimum, we have reliably demonstrated that lower-than-planar costs are
achievable with non-planar walking.
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Supplementary Appendix for
Walking on a moving surface: Energy-optimal walking motions on a
shaky bridge and a shaking treadmill reduce energy costs below normal

Varun Joshi and Manoj Srinivasan
Mechanical and Aerospace Engineering, Columbus, OH - 43201
joshi.142@osu.edu, srinivasan.88@osu.edu, http://movement.osu.edu

The supplementary information for this manuscript contains:

1. A Supplementary Appendix containing thirteen figures (this document), figures S1 to S13 providing addi-
tional technical information about the optimal walking motions under different situations and assumptions.

2. Two supplementary videos, one showing the optimal walking motions on a shaking treadmill and another
showing optimal walking motions on a shakeable bridge, with and without shaking. Note that in these videos,
the swing leg is shown for clarity; as we do not explicitly simulate swing leg dynamics, the swing leg motion is
depicted as having uniform speed.

Figure S1 shows two different optimal walking solutions on an infinite inertia platform oscillated externally: one
solution with non-zero leg work and another with zero leg work. Figure S2 shows the optimal body motion on a
shaky bridge, partly providing an alternative representation of figure 4 of the main manuscript. Figures S3-S6 depict
the variation of metabolic cost per unit distance, platform oscillation amplitude, pedestrian stride frequency, walking
speed and step-width with increasing number of pedestrians for various calculations for walking on the finite inertia
platform. Figures S3 and S4 show this variation for a range of platform stiffness and a fixed platform damping. Figure
S5 shows the variation of these parameters for fixed platform stiffness and varying platform damping. Figure S6 shows
the same calculation with a minimum step-width constraint on the gait. Figure S7 shows that the inverted pendulum
solution is optimal for a force-parameterized model of the biped walking on the finite-inertia bridge. Figures S8 and
S9 show that solution trends do not change significantly for either the infinite-inertia or the finite-inertia calculation,
when we change model parameters such as foot mass, resting rate, integral of force multiplier 7¢,ce, Or the walking
speed. Figures S10, S11, and S12 show effect of oscillations on the individual components of cost in the finite inertia
bridge case. Figure S13 shows the individual cost components for the infinite-inertia treadmill case.

All physical quantities in the figures in this Supplementary Appendix are non-dimensional.
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b) Optimal walking with zero stance leg work
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Figure S1: Optimal walking motion on infinite inertia platform, for force-parameterized optimisations. These
figures show the optimal solution on a platform oscillating sideways sinusoidally under two different oscillation conditions. In
both cases the pedestrian is constrained to walk at a non-dimensional speed of 0.4 ~ 1.2 m/s. a) Non-dimensional stride-
frequency equals 0.3 and platform oscillation amplitude equals 0.03. We see that the solutions take the form of 3D inverted
pendulum walking, in which the leg length is constant for most of stance phase, except during two brief periods, a heel-strike
impulse performing negative work at the beginning of stance phase and a push-off impulse performing positive work at the
end of stance phase. b) Non-dimensional stride-frequency equals 1 and platform oscillation amplitude is 0.1. The solution
continues to be inverted pendulum, however, we find that it is possible to walk with exactly zero stance leg work even though
the work done on the center-of-mass is finite; all the work is performed by the platform as the leg remains exactly constant
length, with no push-off or heel-strike impulses. See Supplementary Video 1 for animations of these walking motions.



Optimal walking motion for finite inertia platform: London Millennium Bridge parameters (1x stiffness 1x damping)

a) Oscillating platform solution (1000 pedestrians) b) Planar solution, no oscillations (10 pedestrians)
locus of
foot positio
locus of locus of
S 0. heelstrike ~ CoM Q O center of mass locus of ]
= = CoM
s 0 and push-off heelstrike s 0 o o
& d push-off g
=01 andp = 01k heelstrike heelstrike _|
locus of platform displacement and push-off and push-off]
foot position corresponding to
CoM position
first step second step first step second step
8 . 8 1+ 4
g locus of g oous of
b= CoM = CoM
20. © > 098
1 L 1 L 1 1 L 1 L 1
0 0.2 0.6 1 0 0.2 0.6 1
forward (X) forward (X)

Figure S2: Optimal body motion for walking on finite inertia platform. The results correspond to London Millennium
Bridge parameters (1x stiffness and 1x damping) for (a) Npedestrians = 1000 pedestrians and (b) Npedestrians = 10 pedestrians.
The top and side view of the body trajectory is shown; also shown in the top view is the resulting bridge oscillation as a
function of the body’s forward position. Supplementary Video 2 shows 3D animations of these walking motions and figure 4
of the main manuscript shows the 3D walking trajectory corresponding to panel-a.
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Figure S3: Optimal walking on the finite inertia platform at 0.5x Millennium Bridge damping for varying
stiffness. The variation in a) metabolic energy cost per unit distance b) platform oscillation amplitude c¢) stride frequency d)
pedestrian walking speed e) pedestrian step width show that non-oscillating solutions are optimal at low pedestrian numbers
and oscillating platform solutions at higher pedestrian numbers. We see that the pedestrians choose to walk with larger
step-width at a speed faster than their optimal on steady ground when the platform oscillates. This figure reproduces and
extends panels a and b in figure 3 of the main manuscript.
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in a) metabolic energy cost per unit distance b) platform oscilation amplitude c¢) stride frequency d) pedestrian walking
speed e) pedestrian step width show how the pedestrian and the platforms’ movement changes between the oscillating and

non-oscillating platform solutions.

The critical number of pedestrians for a shaky platform drops to essentially 1, as one

finds oscillating platform solutions to be optimal for even one person. We no longer have the complicated pattern for varying
stiffness that is seen in the 0.5x damping case (figure S3).



o0
=

0.4r1 b) 09

8

g L Ix 0.8x o 0x Millennium Bridge
£ < .
S — 0ok —— £ 07f Damping
= =

S o3sf 0.4x g

g 0.2x é sl
g 3 0.1x =5 Ix Millennium Bridge  0.1x

; 2 [ Stiffness in all cases

N e

S 03 R 5 03

: 0x 2
2 1x Millennium Bridge Millennium Bridge 4. L )
_§ I Stiffness in all cases Damping 0 : /
= . 1 » /
o . 1x

e s 1 s 1 ; L 1 ’

0 400 _ 800 0 400 800
number of pedestrians number of pedestrians
¢) 033¢ platform natural frequency d) 048~

0x Millennium Bridge Damping //Ox/_
Millennium Bridge

(=]
W

=1

w2

N
T

0.32 D044 Damping
oy Ix Millennium Bridge %
5, Stiffness in all cases on 1x Millennium Bridge 0.1x
%0.31 | é 0.4 L Stiffness in all cases
B B
g 0.2x / 5 02x
2 2
@ &
wn
O
o
(5]
a

' 1x ’
- 0.4x 0.6x 0.8x - 0.4x
0.6x
0.29} 0.32}
.8
. I . I . =

1
0 400 800 0 400 800
number of pedestrians

&

number of pedestrians

e)
0x Millennium Bridge Damping
0.6
0.1x
< 041 lx. Mlllen.mum Bridge
e Stiffness in all cases
=
=9
2
72}
02
0
1 1
0 400 800

number of pedestrians

Figure S5: Optimal walking on the finite inertia platform at the exact Millennium Bridge stiffness for varying
damping. The variation in a) metabolic energy cost per unit distance b) platform oscillation amplitude c) stride frequency d)
pedestrian walking speed e) pedestrian step width show how the pedestrian and the platforms’ movement changes between the
oscillating and non-oscillating platform solutions. Increasing damping makes the oscillating solution less optimal; decreasing
damping lowers the critical number of pedestrians needed for the oscillating solution to be optimal. This figure reproduces
and extends panels ¢ and d in figure 3 of the main manuscript.
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Figure S6: Optimal walking for the finite inertia platform at the exact Millennium Bridge stiffness for varying
damping, but with a minimum step-width of 0.15 used to constrain the motion. The variation in a) metabolic
energy cost per unit distance b) platform oscillation amplitude c) stride frequency d) pedestrian walking speed e) pedestrian
step width show how the pedestrian and the platforms’ movement changes between the oscillating and non-oscillating platform
We see that the minimum step-width constraint leads to oscillations at lower number of pedestrians, but the
metabolic cost of these oscillating solutions does not decrease below the corresponding cost for the non-oscillating solution.
In essence, this figure is identical to the previous figure (figure S5) for large pedestrian numbers for which the optimal step
width is greater than the minimum prescribed; for smaller pedestrian numbers, we obtain optimal solutions with the minimum

solutions.
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Force Parameterized optimization discovers inverted pendulum walking
Bridge 1x stiffness and damping, 1000 Pedestrians
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Figure S7: Force Parameterized optimisation discovers inverted pendulum walking on a shaky bridge. These
are results from an optimisation calculation on a bridge with 1x stiffness and 1x damping with Npedestrians = 900, without
assuming that the motion is inverted pendulum. Instead, the leg forces were allowed to be piecewise linear functions of time
with Neegments = 18 segments per step. The optimisation naturally discovers an inverted-pendulum-like gait, with the leg
length mostly remaining near the maximum leg length and almost constant. More significantly, the leg work remains close to
zero for most of stance phase and becomes non-zero only near the step to step transitions, with push-off and/or heel-strike
impulses. Similarly, the leg-length rate remains close to zero for most of the stance phase and becomes substantially higher
during the push-off and heel-strike impulses.
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Figure S8: Energy reduction persists for a range of model parameters: shaken treadmill. These figures show
that the energy reduction for walking on an oscillated infinite inertia treadmill persists for changes in walking speed, force
multiplier 7gorce and foot mass. a) Increasing the selected walking speed increases the corresponding optimal stride frequency
for the model. b) Increasing the force multiplier 7orce does not change the optimal body motion at any stride frequency, and
thus only moves the cost curves up. c¢) Increasing foot mass increases the energy cost at higher stride frequencies but does not

affect lower stride frequencies to the same degree, the optimal stride frequency does not change.



Effect of model parameters at 1x Millennium Bridge Stiffness, 0.2x Millennium Bridge Damping
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Figure S9: Energy reduction persists for a range of model parameters: shaky bridge. These figures show that
the energy reduction for walking on a finite inertia bridge persists for changes in a) foot mass, b) force multiplier n¢orce, and ¢)
resting rate. Also, shown are variating in platform amplitude, stride frequency, walking speed, and step width for a range of
pedestrian counts, for different values of each of these parameters. We use 1x Millennium Bridge stiffness and 0.2x damping
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a) Total cost per unit distance
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Figure S10: Cost components on a shaky bridge, planar versus non-planar solutions, fixed speed and stride
length. We consider a shaky bridge with 1x stiffness and two different damping values (0.3x and 1x). We fix the forward
speed at 0.4 and forward stride length at 1.4 (stride frequency 0.286). For low pedestrian numbers, all the quantities plotted
are constant, because the optimal motion is planar inverted pendulum and all cost terms are constrained by speed and stride
length. Further, independent of pedestrian number, the swing cost and resting cost are fixed. When the pedestrian number
increases beyond the shaking threshold, the total cost decreases: all of this reduction is due to the stance work cost (b), which
is enabled by a reduction in the positive stance work during push-off (d) and an even greater reduction in the negative work
during heel-strike (e). Near the threshold, a shaking solution has a higher leg force integral cost than a planar solution, but

this increase is much smaller than reduction in the stance work cost.
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Here, we consider a

shaky bridge with 1x stiffness and 0.3x damping. We determine optimal solutions as a function of speed for three different
numbers of pedestrians: Npedestrians = 1, which corresponds to a planar non-shaking solution, Npedestrians = 500 (red) and
Npedestrians = 1000 (blue), which correspond to non-planar shaking solutions.
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Figure S12: When is shaking a shaky bridge better than non-shaking planar walking. We found the optimal
solution for Npedestrians = 1000 for a range of speeds and step lengths (equivalently, stride frequencies). We found that only
for a small range of speeds and stride lengths is a shaking solution better than a non-shaking planar solution, shown by red
circles. The green line is the line corresponding to a stride frequency of 0.3 (that is, stride length = 0.3 speed). Thus, we see
that the regime where shaking is better corresponds to a nearly constant stride frequency that is close to the bridge’s natural
frequency. The results correspond to 1x stiffness, 0.3 damping.

Platform amplitude ~— 0.0 — 0.03 — 0.07
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Figure S13: Cost components for the shaken treadmill. Components of the energy cost per unit distance for non-
dimensional speed 0.4 (1.2 m/s), at three different platform oscillation amplitudes. Notice that the most of the reduction in
total cost is due to the reduction in the reduction in the stance work cost. The resting cost and swing cost do not change with
platform amplitude. The stance force cost does increase with increased platform amplitude as the legs become more tilted
with the vertical, but this increase is much smaller than the decrease in stance work cost. The stance work cost reduction
comes from an equal reduction of both positive and negative leg work, which are equal to each other in the shaken treadmill
case.
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